数学板块学习之FWT

FWT

快速沃尔什变换,在计算数学中,一个与阿达马变换有高度相关的快速沃尔什转换(fast Walsh–Hadamard transform,FWHTh)是一个十分有效率的算法,目的是计算阿达马变换。快速沃尔什转换是一个分而治之的算法,是一个常见的递回方法,将大小N的沃尔什转换拆成两个大小为N/2 的沃尔什转换。——百度百科

参考博客:
https://www.cnblogs.com/cjyyb/p/9065615.html
https://blog.csdn.net/zhouyuheng2003/article/details/84728063

首先,我们要弄明白我们为什么要用FWT,用它求什么
对于 C n = ∑ i + j = n A i ∗ B j C n = ∑ i ∗ j = n A i ∗ B j C n = ∑ i ∣ j = n A i ∗ B j C n = ∑ i & j = n A i ∗ B j C n = ∑ i ⊕ j = n A i ∗ B j \begin{aligned} C_n&=\sum_{i+j=n}A_i*B_j\\ C_n&=\sum_{i*j=n}A_i*B_j\\ C_n&=\sum_{i|j=n}A_i*B_j\\ C_n&=\sum_{i\&j=n}A_i*B_j\\ C_n&=\sum_{i\oplus j=n}A_i*B_j\\ \end{aligned} CnCnCnCnCn=i+j=nAiBj=ij=nAiBj=ij=nAiBj=i&j=nAiBj=ij=nAiBj
对于这几个公式,第一个的 i + j = n i+j=n i+j=n是可以使用FFT来求取的,第二个的 i ∗ j = n i*j=n ij=n的特殊情况下也是可以使用FFT的。但是后面三个是无法使用FFT的。所以也就有了FWT

定义:
A − B = ( a 0 − b 0 , a 1 − b 1 , ⋯   , a n − 1 − b n − 1 ) A + B = ( a 0 + b 0 , a 1 + b 1 , ⋯   , a n − 1 + b n − 1 ) A ∗ B = ( a 0 ∗ b 0 , a 1 ∗ b 1 , ⋯   , a n − 1 ∗ b n − 1 ) A @ B = ( ∑ i @ j = 0 a i ∗ b j , ∑ i @ j = 1 a i ∗ b j , ⋯   , ∑ i @ j = n − 1 a i ∗ b j ) \begin{aligned} A-B&=(a_0-b_0,a_1-b_1,\cdots,a_{n-1}-b_{n-1})\\ A+B&=(a_0+b_0,a_1+b_1,\cdots,a_{n-1}+b_{n-1})\\ A*B&=(a_0*b_0,a_1*b_1,\cdots,a_{n-1}*b_{n-1})\\ A@B&=(\sum_{i@j=0}a_i*b_j,\sum_{i@j=1}a_i*b_j,\cdots,\sum_{i@j=n-1}a_i*b_j) \end{aligned} ABA+BABA@B=(a0b0,a1b1,,an1bn1)=(a0+b0,a1+b1,,an1+bn1)=(a0b0,a1b1,,an1bn1)=(i@j=0aibj,i@j=1aibj,,i@j=n1aibj)
其中 @ @ @属于集合 { ∣ ( 或 ) , & ( 与 ) , ∧ ( 异 或 ) } \{ |(或),\&(与), \wedge(异或) \} {(),&(),()}
并且 @ @ @运算具有分配率 A @ ( B + C ) = A @ B + A @ C A@(B+C)=A@B+A@C A@(B+C)=A@B+A@C也具有交换律 A ∣ B = B ∣ A A|B=B|A AB=BA

另外定义 A 0 A_0 A0为多项式 A A A(A有 2 n 2^n 2n项)的前 2 n − 1 2^{n-1} 2n1项, A 1 A_1 A1为多项式 A A A的后 2 n − 1 2^{n-1} 2n1
A = ( A 0 , A 1 ) A=(A_0,A_1) A=(A0,A1)表示多项式 A 0 A_0 A0后面加上 A 1 A_1 A1多项式形成多项式 A A A

思路
和FFT一样,先进行FWT求出两个多项式的 F W T ( A ) , F W T ( B ) FWT(A),FWT(B) FWT(A),FWT(B),然后对应相乘得到 F W T ( C ) FWT(C) FWT(C),最后逆运算IFWT得到答案多项式C

1.OR 或卷积
c k = ∑ i ∣ j = k a i ∗ b j C = A ∣ B = ( ∑ i ∣ j = 0 a i ∗ b j , ∑ i ∣ j = 1 a i ∗ b j , ⋯   , ∑ i ∣ j = n − 1 a i ∗ b j ) \begin{aligned} c_k&=\sum_{i|j=k}a_i*b_j\\ C=A|B&=(\sum_{i|j=0}a_i*b_j,\sum_{i|j=1}a_i*b_j,\cdots,\sum_{i|j=n-1}a_i*b_j)\\ \end{aligned} ckC=AB=ij=kaibj=(ij=0aibj,ij=1aibj,,ij=n1aibj)
正变换 F W T ( A ) = { ( F W T ( A 0 ) , F W T ( A 0 + A 1 ) ) n>0 A n=0 FWT(A)=\begin{cases} (FWT(A_0),FWT(A_0+A_1))&\text{n>0}\\ A&\text{n=0} \end{cases} FWT(A)={(FWT(A0),FWT(A0+A1))An>0n=0
对应项相乘
F W T ( C ) = F W T ( A ) ∗ F W T ( B ) FWT(C)=FWT(A)*FWT(B) FWT(C)=FWT(A)FWT(B)
逆变换
I F W T ( A ) = { ( I F W T ( A 0 ) , I F W T ( A 1 ) − I F W T ( A 0 ) ) n>0 A n=0 IFWT(A)=\begin{cases} (IFWT(A_0),IFWT(A_1)-IFWT(A_0))&\text{n>0}\\ A&\text{n=0} \end{cases} IFWT(A)={(IFWT(A0),IFWT(A1)IFWT(A0))An>0n=0

2.AND 与卷积
c k = ∑ i & j = k a i ∗ b j C = A & B = ( ∑ i & j = 0 a i ∗ b j , ∑ i & j = 1 a i ∗ b j , ⋯   , ∑ i & j = n − 1 a i ∗ b j ) \begin{aligned} c_k&=\sum_{i\&j=k}a_i*b_j\\ C=A\&B&=(\sum_{i\&j=0}a_i*b_j,\sum_{i\&j=1}a_i*b_j,\cdots,\sum_{i\&j=n-1}a_i*b_j)\\ \end{aligned} ckC=A&B=i&j=kaibj=(i&j=0aibj,i&j=1aibj,,i&j=n1aibj)
正变换 F W T ( A ) = { ( F W T ( A 0 + A 1 ) , F W T ( A 1 ) ) n>0 A n=0 FWT(A)=\begin{cases} (FWT(A_0+A_1),FWT(A_1))&\text{n>0}\\ A&\text{n=0} \end{cases} FWT(A)={(FWT(A0+A1),FWT(A1))An>0n=0
对应项相乘
F W T ( C ) = F W T ( A ) ∗ F W T ( B ) FWT(C)=FWT(A)*FWT(B) FWT(C)=FWT(A)FWT(B)
逆变换
I F W T ( A ) = { ( I F W T ( A 0 ) − I F W T ( A 1 ) , I F W T ( A 0 ) ) n>0 A n=0 IFWT(A)=\begin{cases} (IFWT(A_0)-IFWT(A_1),IFWT(A_0))&\text{n>0}\\ A&\text{n=0} \end{cases} IFWT(A)={(IFWT(A0)IFWT(A1),IFWT(A0))An>0n=0

3.XOR 异或卷积

c k = ∑ i ⊕ j = k a i ∗ b j C = A ⊕ B = ( ∑ i ⊕ j = 0 a i ∗ b j , ∑ i ⊕ j = 1 a i ∗ b j , ⋯   , ∑ i ⊕ j = n − 1 a i ∗ b j ) \begin{aligned} c_k&=\sum_{i\oplus j=k}a_i*b_j\\ C=A\oplus B&=(\sum_{i\oplus j=0}a_i*b_j,\sum_{i\oplus j=1}a_i*b_j,\cdots,\sum_{i\oplus j=n-1}a_i*b_j)\\ \end{aligned} ckC=AB=ij=kaibj=(ij=0aibj,ij=1aibj,,ij=n1aibj)
正变换 F W T ( A ) = { ( F W T ( A 0 + A 1 ) , F W T ( A 0 − A 1 ) ) n>0 A n=0 FWT(A)=\begin{cases} (FWT(A_0+A_1),FWT(A_0-A_1))&\text{n>0}\\ A&\text{n=0} \end{cases} FWT(A)={(FWT(A0+A1),FWT(A0A1))An>0n=0
对应项相乘
F W T ( C ) = F W T ( A ) ∗ F W T ( B ) FWT(C)=FWT(A)*FWT(B) FWT(C)=FWT(A)FWT(B)
逆变换
I F W T ( A ) = { ( I F W T ( A 0 ) + I F W T ( A 1 ) 2 , I F W T ( A 0 ) − I F W T ( A 1 ) 2 ) n>0 A n=0 IFWT(A)=\begin{cases} (\cfrac{IFWT(A_0)+IFWT(A_1)}{2},\cfrac{IFWT(A_0)-IFWT(A_1)}{2})&\text{n>0}\\ A&\text{n=0} \end{cases} IFWT(A)=(2IFWT(A0)+IFWT(A1),2IFWT(A0)IFWT(A1))An>0n=0

代码

/*
*opt =  1 正变换
*opt = -1 逆变换
*/
void FWT_or(int *a,int opt,int N){
	for(int i = 1; i < N; i <<= 1){
		for(int p = i<<1,j = 0; j < N; j += p){
			for(int k = 0; k < i; ++k){
				int x = a[j+k],y = a[i+j+k];
				if(opt == 1) a[i+j+k] = (x+y)%MOD;
				else a[i+j+k] = (y-x+MOD)%MOD;
			}
		}
	}
}

void FWT_and(int *a,int opt,int N){
	for(int i = 1; i < N; i <<= 1){
		for(int p = i<<1, j = 0; j < N; j += p){
			for(int k = 0; k < i; ++k){
				int x = a[j+k],y = a[i+j+k];
				if(opt == 1) a[i+j+k] = (x+y)%MOD;
				else a[i+j+k] = (x-y+MOD)%MOD;
			}
		}
	}
}

void FWT_xor(int *a,int opt,int N){
	for(int i = 1; i < N; i <<= 1){
		for(int p = i<<1,j = 0; j < N; j += p){
			for(int k = 0; k < i; ++k){
				int x = a[j+k],y = a[i+j+k];
				a[j+k] = (x+y)%MOD;
				a[i+j+k] = (x-y+MOD)%MOD;
				//inv2表示2在模mod下的逆元,如果不是在模意义下的话,开一个long long,然后把乘逆元变成直接除二
				if(opt == -1) a[j+k] = 1LL*a[j+k]*inv2%MOD,a[i+j+k] = 1LL*a[i+j+k]*inv2%MOD;
			}
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值