DORE: Document Ordered Relation Extraction based on Generative Framework
文章的主要目标是对文档级的关系抽取。以往的研究主要是基于分类的研究,生成式关系抽取研究较少而且性能不佳。
文档级相比于句子级的关系抽取存在序列长度过长,以及实体定位不准确等问题。作者提出一种利用生成模型范式解决文档级关系抽取问题。以往的研究中采用的生成范式是直接生成出对应的词组(lexicon 生成范式),但此类方法不能很好的适应文档级关系抽取。所以现有的生成式文档级关系抽取方法表现不佳,并不是模型能力不足,而是模型训练的范式不足导致的,因此作者提出DORE范式。
这篇文章其实就是文档抽取实体,再将实体符号化并排序,最后将所有实体转化成二维矩阵填充关系。解码过程刚好反过来,先解码符号,再将符号解码成实体文本。(论文中还提到了五元组,我当做没看见……)
什么是Lexical生成范式?
- ①使用不同的自然语言表示同一实体,例如 “Julian Reinard” 和 “He”;
- ②两个相似的关系使模型识别时产生冲突,例如 “country” and “country of citizenship”;
- ③模型可能输出该文本中未出现的单词;
- ④预测三元组顺序不遵循人类阅读顺序,例如预测 “country of citizenship” 应出现在“league” 之前。
Lexical范式主要存在两个缺点:①不会产生特定长度的目标序列; ②可能出现生成序列过长的现象。
为了解决以上问题作者