论文综述——DORE: Document Ordered Relation Extraction based on Generative Framework

DORE: Document Ordered Relation Extraction based on Generative Framework

文章的主要目标是对文档级的关系抽取。以往的研究主要是基于分类的研究,生成式关系抽取研究较少而且性能不佳。

文档级相比于句子级的关系抽取存在序列长度过长,以及实体定位不准确等问题。作者提出一种利用生成模型范式解决文档级关系抽取问题。以往的研究中采用的生成范式是直接生成出对应的词组(lexicon 生成范式),但此类方法不能很好的适应文档级关系抽取。所以现有的生成式文档级关系抽取方法表现不佳,并不是模型能力不足,而是模型训练的范式不足导致的,因此作者提出DORE范式。

这篇文章其实就是文档抽取实体,再将实体符号化并排序,最后将所有实体转化成二维矩阵填充关系。解码过程刚好反过来,先解码符号,再将符号解码成实体文本。(论文中还提到了五元组,我当做没看见……)

在这里插入图片描述

什么是Lexical生成范式?

  • ①使用不同的自然语言表示同一实体,例如 “Julian Reinard” 和 “He”;
  • ②两个相似的关系使模型识别时产生冲突,例如 “country” and “country of citizenship”;
  • ③模型可能输出该文本中未出现的单词;
  • ④预测三元组顺序不遵循人类阅读顺序,例如预测 “country of citizenship” 应出现在“league” 之前。

Lexical范式主要存在两个缺点:①不会产生特定长度的目标序列; ②可能出现生成序列过长的现象。

为了解决以上问题作者

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泤燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值