论文综述——UNIRE: A Unified Label Space for Entity Relation Extraction

UniRE提出了一种填表法,将实体检测和关系抽取置于同一标签空间处理,利用预训练模型和双仿射模型建模单词对关系。模型通过对称性和蕴含性约束优化,并设计了联合解码算法。实验显示,尽管在性能上提升有限,但UniRE在参数量少和推理速度快方面具有优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UNIRE: A Unified Label Space for Entity Relation Extraction

1 任务介绍

过构建标签空间来对实体和关系进行联合抽取的方法。

实体关系抽取旨在提取文本中的实体并检测它们的实体类型,以及对每个实体对检测它们的关系。作者提出了一种统一标签空间的联合抽取方法——填表法,主要是将实体检测和关系抽取两个子任务放在同一个标签空间中进行处理。针对该方法,提出了一种对应的联合解码算法(Joint Decoding Algorithm),解码出表中的实体和关系。

在这里插入图片描述

图中词对关系表。将文本表示为二维表结构,它具有更强的表示能力,能将所有的实体和关系都在这张表中完整得表示出来。其中,实体类型:(PER, 人名实体),(GPE, 地理位置实体);关系类型:(PER-SOC, 社会关系),(ORG-AFF, 机构附属关系),(PHYS, 位置临近关系)

在这个表中每个单元格对应于一个单词对,使用不同颜色表示不同的实体或关系类型。对角线上的正方形表示实体类型,而关系是对角线外的矩形。

表可以识别对称性和重叠关系:

  • 对称性:对称的关系类型在表中关于对角线对称的,表中紫色单元格表示了两对儿对称的关系类型PER-SOC,而绿色单元格表示的PHYS和蓝色单元格表示的ORG-AFF则分别表示了两种不同的不对称关系类型。
  • 重叠关系:表前两行中&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泤燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值