数字特征

描述性统计变量-数字特征

描述性统计是借助图表或者总结性的数值来描述数据的统计手段。

中心位置:描述数据的平均情况

  • 均值 mean
  • 中位数 median
  • 众位数 mode # 出现次数最多的

发散程度,数据以中心位置为标准有多发散

  • 极差,PTP,max-min
  • 方差,variance,var(data),
  • 标准差,std(data)
  • 变异系数CV,cv=std(data)/mean(data)
    在这里插入图片描述
    偏差程度
  • z-score,定义z-分数(Z-Score)为测量值距均值相差的标准差数目,(data[0]-mean(data)) / std(data),通常来说,z-分数的绝对值大于3将视为异常。

相关程度
有两组数据时,我们关心这两组数据是否相关,相关程度有多少。

data = array([data1, data2])
  • 协方差,协方差的绝对值越大表示相关程度越大,协方差为正值表示正相关,负值为负相关,0为不相关。 cov(data, bias=1)
  • 相关系数,相关系数是基于协方差但进行了无量纲处理。corrcoef(data)
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值