编程挑战 ----- 螺旋矩阵的实现

这篇博客介绍了作者在学习Python过程中遇到的一个复杂编程挑战——螺旋矩阵的实现。通过分析5阶、6阶、7阶螺旋矩阵的规律,作者发现螺旋矩阵的循环次数与阶数有关,并详细阐述了生成螺旋矩阵的步骤和方向变化。最终,作者提供了实现螺旋矩阵的Python代码,通过外层循环1和内层循环2,以及动态调整列表下标来完成螺旋填充。
摘要由CSDN通过智能技术生成

2018.03.11
author : wills
今天给大家分享一个我学习python语言以来自己感觉写的最复杂的程序。当然这些全是我个人的看法与理解,如果有不足之处,大家多多指出。
螺旋矩阵,先先上一张图给大家看看。
下面分别是5阶10阶24阶的螺旋矩阵

5阶螺旋矩阵
10阶

24阶

要写出这个程序的代码,首先我们需要找到这个螺旋矩阵里面蕴藏的规律

5阶思路

从图上可以看出,5阶的螺旋矩阵我们要打印出这个图案需要进行5*1+4*2+3*2+2*2+1*2,共9次循环。
6阶的矩阵用同样的方法分析,需要6*1+5*2+4*2+3*2+2*2+1*2=11次循环
7阶 需要 7*1+6*2+5*2+4*2+3*2+2*2+1*2 = 13次循环。
上面就是我发现的主要规律之一
我的总体思路是,首先不管要求多少阶的螺旋矩阵,我先生成一个包含所有数字的列表list1=[1,2,3,4,5…..],再生成一个二阶的列表list2=[[],[],….],即一个大列表套小列表。n阶矩阵,就有n个小列表,小列表就有n个数字,然后利用规律一,不停地循环将list1对应的值赋给,list2中的元素,最后打印list2就得到所求矩阵。在这里,因为第一行刚好和list2,第一个元素相同,所以循环可以少做一次,这时再看规律一变成了
5 阶:4*2+3*2+

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值