捷联惯导系统(SINS)误差模型

前言

本篇上接捷联惯导系统(SINS)机械编排。在做完机械编排后,往往需要通过组合导航来降低纯INS的累积误差,而SINS误差模型是构建组合导航卡尔曼滤波状态模型的重要部分,本篇参照《捷联惯导算法与组合导航原理》推导整理SINS误差模型。

惯性传感器测量误差

大多数情况下,比如惯导标定比较准确或运载体机动不大时,可以忽略刻度系数矩阵误差的影响,则陀螺及加速度计的测量误差为对于器件的零偏,即:
在这里插入图片描述

姿态误差

理想的导航坐标系为n系,然而计算机计算得到的导航坐标系存在偏差,记为n’系,两者之间存在偏差。根据矩阵链乘规则,有:
在这里插入图片描述
以n系为参考系,记从n系到n’系的等效旋转矢量为 ϕ \mathbb \phi ϕ,常称为失准角误差。若失准角误差为小量,则有:
在这里插入图片描述
代入得式a
在这里插入图片描述
已知方向余弦矩阵微分方程:
在这里插入图片描述
加入误差后变为:
在这里插入图片描述
对式a两边同时微分,其右端应等于上式右端,即有:
在这里插入图片描述
上式两边同时右乘Cnb,整理得:
在这里插入图片描述
上式即为姿态误差方程,反映了计算导航系(n’系)相对于理想导航系(n系)的失准角变化规律。

速度误差

速度误差是指惯导系统导航计算机中的计算速度与理想速度之间的偏差,定义为:
在这里插入图片描述
上式两边同时求微分:
在这里插入图片描述比力方程见INS机械编排,重写为式b
在这里插入图片描述
加入误差后变为式c
在这里插入图片描述
式c减式b得:
在这里插入图片描述
代入式a,展开各误差项,得速度误差方程:
在这里插入图片描述

位置误差

已知位置微分方程(纬度、经度,高度):
在这里插入图片描述
进行误差分析,并通过泰勒展开可得位置误差方程:
在这里插入图片描述

误差方程整理

地球自转角速度及导航系转动角速度表达式:
在这里插入图片描述
对上式求偏差,分别得:
在这里插入图片描述
在这里插入图片描述
已知考虑了Heiskanen垂线偏差后的重力矢量公式(东北天):
在这里插入图片描述
对上式求偏差,得:
在这里插入图片描述
至此,可计算得姿态、速度和位置误差的详细表达式:

姿态误差方程:
在这里插入图片描述
速度误差方程:
在这里插入图片描述
位置误差方程:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值