GNSS伪距及载波相位观测模型

前言

最小二乘与卡尔曼滤波是目前GNSS定位中主流的二类平差滤波方法,而构建观测模型是此二类方法的关键步骤。本篇从伪距和载波相位观测方程出发,推导了伪距单点定位,RTK相对定位,历元间三差相对定位中的观测模型。主要参考RTKLIB、《GPS测量与数据处理》及《GPS原理与接收机设计》书籍。

一、观测方程

1、伪距、载波相位观测方程

在这里插入图片描述
其中,p为伪距观测值(单位m),r为真实卫地距(单位m),c为光速(单位m/s),光速乘的那部分为接收机钟差及卫星钟差(单位s),I为电离层延迟(单位m),T为对流层延迟(单位m),φ为载波相位观测值(单位rad),λ为载波波长(单位m),N为整周模糊度(单位rad)。伪距观测及载波相位观测中都在方程尾引入了测量噪声项,代表了所有未直接体现在方程中的误差总和,为了方便公式书写,后续将其忽略。

2、单差、双差、三差观测方程

单差观测:
伪距观测及载波相位观测在流动站与基准站之间求一次差,可以消除卫星钟差,在短基线情况下(基站流动站之间的距离不超过10km),可以消去电离层和对流层延迟误差,忽略测量噪声项,得到如下观测方程:
在这里插入图片描述
双差观测:
单差观测在同系统卫星p与卫星q之间作二次差,可消去接收机钟差,得到双差观测方程:
在这里插入图片描述
三差观测:
双差观测在此历元与上一历元之间作三次差,可消去双差整周模糊度参数(常量),得到三差观测方程:
在这里插入图片描述

二、观测模型

1、伪距单点定位(SPP)最小二乘观测模型

伪距观测方程中的r为真实的卫地距,由于真实接收机位置未知,真实卫地距是无法计算的,我们只能给定一个大致的接收机位置[x, y, z](ECEF_xyz坐标系下,后续默认都在此坐标系下),可求得卫星与接收机大致位置之间卫地距ρ:
在这里插入图片描述
真实卫地距r:
在这里插入图片描述
在真实位置处泰勒展开并取一阶项,可得:
在这里插入图片描述
则伪距观测方程可写为:
在这里插入图片描述
通过上式我们可以构建最小二乘的几个矩阵:
在这里插入图片描述
然后通过最小二乘求解公式完成一次位置的迭代更新:
在这里插入图片描述
上式中的P为伪距观测的权值矩阵,一般通过卫星高度角定权模型给出,迭代计算10次以下(RTKLIB)就可收敛得到伪距单点定位结果。

2、载波相位相对定位(RTK)卡尔曼滤波浮点解量测模型

浮点解求解使用伪距及载波相位双差观测,双差观测方程:
在这里插入图片描述
上式的r为真实双差卫地距,用下标i表示流动站,j表示基站(基站由于真实坐标已知,认为真实卫地距已知),上标p表示卫星p,q表示卫星q,代入真实卫地距线性化结果并站间作差星间作差可得:
在这里插入图片描述
上式代入双差观测方程:
在这里插入图片描述
通过上式我们可以构造卡尔曼滤波量测模型,根据状态参数的不同,主要有以下两种构造方式:

(1)以单差模糊度参数作为状态量(RTKLIB)

根据状态量的不同对双差观测方程进行适当的变换:
在这里插入图片描述
根据上式,可以构建卡尔曼滤波浮点解求解的量测模型(假设观测到N颗卫星,以第一颗卫星作为双差基准星):
在这里插入图片描述
V(t)为双差观测量的误差,一般是通过伪距误差(事先设定的定值)及载波相位误差(事先设定的定值)通过双差变化得到。

(2)以双差模糊度误差作为状态量

将双差模糊度的误差(整数)分离出来,得到观测方程:
在这里插入图片描述
带-上标的N表示为上一历元双差模糊度的最优估计,根据上式,构建卡尔曼滤波浮点解求解的量测方程(假设观测到N颗卫星,以第一颗卫星作为双差基准星):
在这里插入图片描述
然后通过卡尔曼滤波量测更新公式完成卡尔曼滤波浮点解的求解。

3、 历元间三差最小二乘观测模型

三差观测方程:
在这里插入图片描述
对于三差卫地距,在历元间作了一次差,我们认为上一历元的位置结果是精确的(即t1历元的双差卫地距是精确已知的),以t2历元的伪距单点定位位置解作为此历元接收机大致位置,代入t2历元双差卫地距的线性化结果,此时的真实三差卫地距写为:
在这里插入图片描述
上式中的delta_r(t2)表示t2历元的真实位置与t2历元大致位置间的误差。将上式代入三差观测方程,可得:
在这里插入图片描述
移项得:
在这里插入图片描述
通过上式我们可以构建出最小二乘的各项矩阵:
在这里插入图片描述
只做一次最小二乘迭代,得到此历元位置与此历元大致位置的位置误差,此位置误差再加上此历元大致位置与上一历元精确位置的误差,就得到了t1历元到t2历元的接收机位置变化量。若直接用上一历元的接收机精确位置作为此历元接收机的大致位置,那么三差求得的位置误差就是两历元间的接收机位置变化量

### GNSS 中多普勒、载波相位的概念及应用 #### 1. 多普勒效应及其在GNSS中的意义 在卫星导航系统中,载波多普勒指的是由于相对运动引起的接收到的载波频率的变化。这种变化能够反映用户相对于卫星的速度。具体而言,当用户设备与卫星之间存在相对运动时,接收端检测到的载波频率会发生偏移,该现象被称为载波多普勒效应[^1]。 #### 2. 定义及其重要性 是指从地面站到空间飞行器之间的几何路径长度加上各种误差成分的结果。它本质上是通过测量信号传输时间并乘以光速来估算的离值。然而,实际操作过程中,这个数值包含了多种因素造成的偏差,比如大气延迟、钟差等。尽管如此,在没有其他更精准数据的情况下,仍然是确定位置的关键参数之一。 #### 3. 载波相位测量的特点 相比于基于C/A码或P(Y)码测定的粗略离——即所谓的“”,载波相位提供了更为精细的位置信息。这是因为载波波长远小于扩频码周期,从而使得其对应的测精度更高。不过,使用这种方法面临的主要挑战在于如何解决整周模糊度问题,也就是不知道确切有多少完整的波长存在于两地间。一旦解决了这个问题,就能显著提高定位准确性[^2]。 #### 4. 组合技术:相位平滑的应用 为了克服单一方法存在的局限性,工程师们开发出了结合两者优点的技术方案—相位平滑。这项技术充分利用了载波相位较高的分辨率以及易于获取的优势,经过适当处理后可以获得更加可靠且准确的位置估计。特别是对于动态环境下的快速收敛和平稳跟踪具有重要意义[^3]。 ```python def phase_smoothed_pseudorange(pseudo_range, carrier_phase): """ 计算相位平滑 参数: pseudo_range (float): 初始测量值 carrier_phase (float): 同步时间段内的累积载波相位变化 返回: float: 平滑后的 """ smoothed_value = pseudo_range + carrier_phase / wavelength return smoothed_value ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值