Given an m × n m\times n m×n-matrix A A A and an n × p n\times p n×p-matrix B B B. Prove that ( A B ) T = B T A T (AB)^T = B^TA^T (AB)T=BTAT.
Here is my attempt:
Write the matrices A A A and B B B as A = [ a i j ] A = [a_{ij}] A=[aij] and B = [ b i j ] B = [b_{ij}] B=[bij], meaning that their ( i , j ) \left(i,j\right) (i,j)-th entries are a i j a_{ij} aij and b i j b_{ij} bij, respectively.
Let C = A B = [ c i j ] C=AB=[c_{ij}] C=AB=[cij], where c i j = ∑ k = 1 n a i k b k j c_{ij} = \sum_{k=1}^n a_{ik}b_{kj} cij=∑k=1naikbkj, the standard multiplication definition.
We want ( A B ) T = C T = [ c j i ] (AB)^T = C^T = [c_{ji}] (AB)T=CT=[cji]. That is the element in position j , i j,i j,i is ∑ k = 1 n a i k b k j \sum_{k=1}^n a_{ik}b_{kj} ∑k=1naikbkj. For instance, if i = 2 , j = 3 i=2, j=3 i=2,j=3, then the element in 2 , 3 2,3 2,3 of C C C is that sum, but the element in position 3 , 2 3,2 3,2 of the transpose is that sum.
I need to get the same value for the element in position 3 , 2 3,2 3,2 of the right side.
The transpose matrices are B T = [ b j i ] , A T = [ a j i ] B^T=[b_{ji}], A^T=[a_{ji}] BT=[bji],AT=[aji]. They are size p × n p \times n p×n and n × m n \times m n×m. That is, they switch rows and columns.
Let D = B T A T = [ d j i ] D = B^T A^T = [d_{ji}] D=BTAT=[dji]. I write the indices backwards because if I want the element in position 3 , 2 3,2 3,2, that is, i = 2 , j = 3 i=2, j=3 i=2,j=3 just like on the other side.
I get d j i = ∑ k = 1 n b j k a k i d_{ji} = \sum_{k=1}^n b_{jk}a_{ki} dji=∑k=1nbjkaki
d j i = ∑ k = 1 n b k j a i k d_{ji} = \sum_{k=1}^n b_{kj}a_{ik} dji=∑k=1nbkjaik, this is the multiplying the transposes of B B B and A A A