吴恩达深度学习笔记——第一二课

做图像识别的时候,大多使用CNN来解决:

在用python构建神经网络的时候,输入设置为一个nx * m的矩阵,其中nx是每一个样本的长度(64643),m是所有样本的总数m个。这样设置的时候便于神经网络的构建。

Loss Function:
在这里插入图片描述

关于激活函数sigmoid 和 softmax

两者用于分类时,都可以将分类器输出的原始值转化为概率

sigmoid 适合于各种情况的概率不需要相加为1的时候,即,两种或以上情况是可能同时存在的。而softmax的输出值相加为1,适合于只能有一种结果,不能有两种或以上情况共存。

Sigmoid函数如下所示(注意e):
在这里插入图片描述
Softmax函数如下:
在这里插入图片描述
除分母外,为综合所有因素,将原始输出值中的e ^ thing相加,Softmax函数与Sigmoid函数差别不大。换言之,用Softmax函数计算单个原始输出值(例如Z1)时,不能只计算Z1,分母中的Z1,Z2,Z3和Z4也应加以计算,如下所示:
在这里插入图片描述
然后如果不是在输出层,其他层的激活函数几乎不会使用sigmoid,而是需要使用性能更好的tanh,因为tanh的取值范围在(-1,1)之间,平均值为0,这样更好。而即使是输出层,也只有在二分类的时候才会用sigmoid。

在这里插入图片描述
RELU也是非常常用的激活函数,因为 a = R E L U ( z ) = m a x ( 0 , z ) a = RELU(z) = max(0, z) a=RELU(z)=max(0,z) 不会在z的值变大的时候使梯度近似为零(导致学习非常缓慢),现实中也几乎不会出现所有z全都为零的情况。

或者是 l e a k y − r e l u = m a x ( 0.01 z , z ) leaky_-relu = max(0.01z, z) leakyrelu=max(0.01z,z) ,但是不如relu常用。

关于进度

今天被老师问了看书看到哪了。我只能说第零章,说实话我第零章还没看完。

这本书,全英文原版不说,里面的定理都是没有证明过程的,而且有一些概念并没有提到。因为是英文原著的缘故,跟我大一的时候学的线性代数差距其实有点大,而且这本书作为专业修习的基础书,讲得深入很多。只有很少一部分之前学过的概念和定理能够准确地对上号,其余的百分之九十都是新内容。

看了好几天才看到第16页,这也让我有些沮丧。

短期来说似乎也没有什么办法,老师限期四十天,我也慢慢啃吧,尽量啃完T_T

然后老师内涵我要多努努力。我努力,马上就努力,哭了T_T

我其实发现,我特别容易给自己设限制,就必须有个人push我一下我才着急往前走,不然我真的特别容易固步自封,而且我也不是很会给别人带来惊喜的那种人,我实际做到的总是under 别人的 expectation。(得,这才几天,我就开始也这样说话了)

关于Python中使用numpy的几点注意事项

这个问题其实也困扰我很久了,就很烦,矩阵维度这一块,总是有一些shape是(5,),之前见过很多次也一直不太理解。

是这样,当用指令生成一个“矩阵”,如下:

a = np.random.randn(5)

a =  [-0.46124724 -0.79949711 -0.175863   -0.15324351 -0.27096938]
shape:  (5,)

得到的a是这样的,shape是(5,)这样一个表示。这其实是一个 rank 为 1 的 array。

然后如果生成的指令变为

a = np.random.randn(5, 1)

a =  [[ 0.1717126 ]
 [-0.48400011]
 [-0.81556645]
 [ 0.97819986]
 [ 2.41299644]]
shape:  (5, 1)

这次得到的就是一个 row vector 列向量了。同理,如果是(1,5),那就是行向量。

注意到前面只有一个[],后面有两个[],这也是区别。

还有,如果用第一种方法生成,当a与a的转置相乘的时候,得到的其实是一个数,而不是像我们想象的一样是一个矩阵。这样一来,一些操作可能就会受到影响。可以通过==a.reshape(5, 1)==的方法来将他转换成向量的形式,而不是一个数组。

老师还说可以哟个assert(a.shape == (5, 1)),然后我搜了一下,这是个用来处理错误的东西。相当于,只有a的shape是(5,1)的时候可以执行。如果不是的话,就会报错显示AssertionError。

而且,直接定义x = [1, 2, 3] 和定义x = np,array([1, 2, 3]) 也是不一样的,后者是 numpy array,前者就是列表list。

还有,在看矩阵的shape的时候,应该是先看最外侧,再往里侧看。就比如,

np.array([[[ 0.67826139,  0.29380381],
        [ 0.90714982,  0.52835647],
        [ 0.4215251 ,  0.45017551]],

       [[ 0.92814219,  0.96677647],
        [ 0.85304703,  0.52351845],
        [ 0.19981397,  0.27417313]],

       [[ 0.60659855,  0.00533165],
        [ 0.10820313,  0.49978937],
        [ 0.34144279,  0.94630077]]])

这就是一个3*3*2的矩阵。

深层/浅层

对于深层神经网络或者是浅层神经网络,深和浅指的是神经网络的层数。

深层神经网络的前向传递(forward propagation)

和单层神经网络类似,深层神经网络只不过是一层层的神经网络连接在一起,只不过每一层的神经元个数或者参数 w 、 b w、b wb 都不尽相同。

在这里插入图片描述
这是一个五层的神经网络(不计入输入层),其中每一层都有对应的参数 w [ i ] , b [ i ] w[i], b[i] w[i],b[i],并且每层的参数的维度如下:
w [ i ] . s h a p e = ( n [ i ] , n [ i − 1 ] ) w[i].shape = (n[i], n[i-1]) w[i].shape=(n[i],n[i1])
b [ i ] . s h a p e = ( n [ i ] , 1 ) b[i].shape = (n[i], 1) b[i].shape=(n[i],1)

搭建神经网络模块

前向传递:
在这里插入图片描述
反向传递

在这里插入图片描述
其中g’(z)是每层的激活函数关于z的导数。

上两图中左侧是单个样本的情况,右侧是将m个样本向量化(放在同一矩阵中)的情况。

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值