算法复杂性理论--P问题,NP问题等

参考链接
首先明确几个概念
P问题,NP问题,NP完全问题,NP难问题
对于一个判定问题,例如一个数组,是否存在子集满足子集和为某个数,这种问题。
如果这个问题在多项式时间内存在一种确定性算法可以求解,那么就是P问题。(注意必须是多项式时间内,像如01背包问题,虽然可以用动态规划问题求解,但是其一它不是判定问题,其二它在执行动态规划时的时间不是多项式时间参考链接
如果这个问题存在一种非确定性算法可以求解,那么就是P问题。这个非确定算法就是说不能直接去求解,但是我们可以假设一个解,看这个解是否在多项式时间内验证它对不对,如果可以验证,那么就存在非确定性算法。
对于NP完全问题和NP难,要满足下面两个条件。
在这里插入图片描述
一般来说证明是NP完全问题,要用下面这个定理
在这里插入图片描述
已知一个问题是NP完全问题L,然后证明L1所求解的问题是NP的,就是可以用一种非确定算法验证,然后只用推导L可以在多项式时间内转换到L1就可以了。
这个转换的证明思路见下面
在这里插入图片描述
在这里插入图片描述
核心关键就是用L问题的解来构造出L1的解,对于判定问题来说,只要是可以得到是或否就可以了。
到目前我们就弄完了,四种问题之间的关系是
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值