支持向量机二分类问题推广到多分类问题

将二分类问题推广到多分类问题,这里介绍两种策略,一个是一对其余策略,另外一个是一对一策略。

一对其余策略

对于C分类问题需构造C个二分类最优超平面
第1个二分类问题,把第1类看作是正类,其余看作负类;
第2个二分类问题,把第2类看作正类,其余看作负类;
以此类推…;
第C个二分类问题,把第C类看作正类,其余看作负类。
设第 i i i个二分类问题的最优超平面为 ( ω i , b i ) (\omega_{i},b_{i}) (ωi,bi),即
g i ( x ) = ω i ϕ ( x ) + b i = 0 g_{i}(x)=\omega_{i}\phi(x)+b_{i}=0 gi(x)=ωiϕ(x)+bi=0
其中 ϕ ( x ) \phi (x) ϕ(x)是原始空间到新空间的映射
输入 x x x所属的类别为
i ∗ = m a x i ∈ ( 1 , 2 , . . . , c ) g i ( x ) i*=max_{i\in (1,2,...,c)}g_{i}(x) i=maxi(1,2,...,c)gi(x)

一对一策略

对于C分类问题,一共要构造 c ( c − 1 ) 2 \frac{c(c-1)}{2} 2c(c1)个二分类分隔超平面
对于第1个二分类问题,把第1类看作正类,第2 类看作负类,组成训练集 T 12 T_{12} T12;
对于第2个二分类问题,把第1类看作正类,第3类看作负类,组成训练集 T 13 T_{13} T13
以此类推…;
对于第 i ( 3 < i ≤ C ) i(3<i\le C) i(3<iC)个二分类问题,把第1类看作正类,第i类看作负类,组成训练集 T 1 i T_{1i} T1i
以此类推…;

对于第 2 C + i − 1 ( 1 ≤ i ≤ C ) 2C+i-1(1\le i\le C) 2C+i1(1iC)个二分类问题,把第3类看作正类,第 i i i类看作负类,组成训练集 T 3 i T_{3i} T3i
以此类推…。
设训练集 T i j T_{ij} Tij对应的二分类问题的最优超平面为 ( ω i j , b i j ) (\omega_{ij},b_{ij}) (ωij,bij)
g i j ( x ) = ( ω i j ⋅ ϕ ( x ) + b i j ) = 0 g_{ij}(x)=(\omega_{ij}\cdot \phi (x)+b_{ij})=0 gij(x)=(ωijϕ(x)+bij)=0
i < j , 1 < j ≤ C , 1 ≤ i < C i<j,1<j\le C,1\le i<C i<j,1<jC,1i<C
输入 x x x所属的类别为
i j ∗ = { i g i j > 0 j 其他 ij^*=\begin{cases} i & g_{ij}>0 \\ j & {\text{其他}} \end{cases} ij={ijgij>0其他
综合考虑 c ( c − 1 ) 2 \frac{c(c-1)}{2} 2c(c1)个分类器对 x x x所属类别的意见,然后采用投票法来确定 x x x最终所属的类别,如第 i j ij ij个分类器判定 x x x属于第 i i i类,则第 i i i类获得一票,得票最多的类即为 x x x所属的类别。
线性可分支持向量机
线性支持向量机
非线性支持向量机

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值