将二分类问题推广到多分类问题,这里介绍两种策略,一个是一对其余策略,另外一个是一对一策略。
一对其余策略
对于C分类问题需构造C个二分类最优超平面
第1个二分类问题,把第1类看作是正类,其余看作负类;
第2个二分类问题,把第2类看作正类,其余看作负类;
以此类推…;
第C个二分类问题,把第C类看作正类,其余看作负类。
设第
i
i
i个二分类问题的最优超平面为
(
ω
i
,
b
i
)
(\omega_{i},b_{i})
(ωi,bi),即
g
i
(
x
)
=
ω
i
ϕ
(
x
)
+
b
i
=
0
g_{i}(x)=\omega_{i}\phi(x)+b_{i}=0
gi(x)=ωiϕ(x)+bi=0
其中
ϕ
(
x
)
\phi (x)
ϕ(x)是原始空间到新空间的映射
输入
x
x
x所属的类别为
i
∗
=
m
a
x
i
∈
(
1
,
2
,
.
.
.
,
c
)
g
i
(
x
)
i*=max_{i\in (1,2,...,c)}g_{i}(x)
i∗=maxi∈(1,2,...,c)gi(x)
一对一策略
对于C分类问题,一共要构造
c
(
c
−
1
)
2
\frac{c(c-1)}{2}
2c(c−1)个二分类分隔超平面
对于第1个二分类问题,把第1类看作正类,第2 类看作负类,组成训练集
T
12
T_{12}
T12;
对于第2个二分类问题,把第1类看作正类,第3类看作负类,组成训练集
T
13
T_{13}
T13;
以此类推…;
对于第
i
(
3
<
i
≤
C
)
i(3<i\le C)
i(3<i≤C)个二分类问题,把第1类看作正类,第i类看作负类,组成训练集
T
1
i
T_{1i}
T1i;
以此类推…;
对于第
2
C
+
i
−
1
(
1
≤
i
≤
C
)
2C+i-1(1\le i\le C)
2C+i−1(1≤i≤C)个二分类问题,把第3类看作正类,第
i
i
i类看作负类,组成训练集
T
3
i
T_{3i}
T3i
以此类推…。
设训练集
T
i
j
T_{ij}
Tij对应的二分类问题的最优超平面为
(
ω
i
j
,
b
i
j
)
(\omega_{ij},b_{ij})
(ωij,bij):
g
i
j
(
x
)
=
(
ω
i
j
⋅
ϕ
(
x
)
+
b
i
j
)
=
0
g_{ij}(x)=(\omega_{ij}\cdot \phi (x)+b_{ij})=0
gij(x)=(ωij⋅ϕ(x)+bij)=0
i
<
j
,
1
<
j
≤
C
,
1
≤
i
<
C
i<j,1<j\le C,1\le i<C
i<j,1<j≤C,1≤i<C
输入
x
x
x所属的类别为
i
j
∗
=
{
i
g
i
j
>
0
j
其他
ij^*=\begin{cases} i & g_{ij}>0 \\ j & {\text{其他}} \end{cases}
ij∗={ijgij>0其他
综合考虑
c
(
c
−
1
)
2
\frac{c(c-1)}{2}
2c(c−1)个分类器对
x
x
x所属类别的意见,然后采用投票法来确定
x
x
x最终所属的类别,如第
i
j
ij
ij个分类器判定
x
x
x属于第
i
i
i类,则第
i
i
i类获得一票,得票最多的类即为
x
x
x所属的类别。
线性可分支持向量机
线性支持向量机
非线性支持向量机