【专】第一章 函数、极限与连续


求极限的方法

直接代入法

所有的求极限 lim ⁡ x → x 0 f ( x ) \lim\limits_{x \to x_0}f(x) xx0limf(x) 都先将 x 0 x_0 x0 代入到 f ( x ) f(x) f(x)
若得到的值为常数A,则 lim ⁡ x → x 0 f ( x ) = \lim\limits_{x \to x_0}f(x)= xx0limf(x)=A;
若为无穷,则 lim ⁡ x → x 0 f ( x ) = ∞ \lim\limits_{x \to x_0}f(x)=\infty xx0limf(x)=
若判断不出结果(未定型),则选择其他方法。

常见未定型: 0 0 , ∞ ∞ , 1 ∞ , 0 ⋅ ∞ , ∞ − ∞ , 0 0 , ∞ 0 {\color{red}\frac{0}{0}, \frac{\infty}{\infty}, 1^\infty}, 0 \cdot \infty,\infty-\infty, 0^0, \infty^0 00,,1,0,,00,0
 
例1:(源于《考点分析》P19 # 二、4题)
x = π 2 x=\frac{\pi}{2} x=2π 是函数 y = x tan ⁡ x y= \frac{x}{\tan x} y=tanxx 的可去间断点。
解: lim ⁡ x → π 2 x tan ⁡ x = 0. C ∞ = 0 , C 为常数 \lim\limits_{x \to \frac{\pi}{2}}\frac{x}{\tan x}=0.\qquad {\color{red}\frac{C}{\infty}=0, C为常数} x2πlimtanxx=0.C=0,C为常数
例: lim ⁡ x → π 2 ln ⁡ sin ⁡ x = 0. \lim\limits_{x \to \frac{\pi}{2}}\ln \sin x=0. x2πlimlnsinx=0.

例2: (源于第六次8.10作业 # 2(4)题)
lim ⁡ x → 0 x 1 3 x = lim ⁡ x → 0 x 1 3 ⋅ x − 1 3 x ⋅ x − 1 3 = lim ⁡ x → 0 1 x 1 − 1 3 = lim ⁡ x → 0 1 x 2 3 = ∞ \lim\limits_{x \to 0} \frac{x^\frac{1}{3}}{x}=\lim\limits_{x \to 0} \frac{x^\frac{1}{3} ·x^{-\frac{1}{3}}}{x·x^{-\frac{1}{3}}}=\lim\limits_{x \to 0} \frac{1}{x^{1-\frac{1}{3}}}=\lim\limits_{x \to 0} \frac{1}{x^\frac{2}{3}}=\infty x0limxx31=x0limxx31x31x31=x0limx1311=x0limx321=
例: lim ⁡ x → 0 1 x = ∞ \lim\limits_{x \to 0}\frac{1}{x}=\infty x0limx1=
例3: lim ⁡ x → 0 x − sin ⁡ x x 3 \lim\limits_{x \to 0}\frac{x-\sin x}{x^3} x0limx3xsinx 0 0 \frac{0}{0} 00 型,需要其他方法来解

重要极限

lim ⁡ x → 0 ( 1 + x ) 1 x = e lim ⁡ □ → 0 ( 1 + □ ) 1 □ = e \lim\limits_{x \to 0}(1+x)^\frac{1}{x}=\mathrm{e} \\ \lim\limits_{\Box \to 0}(1+\Box)^\frac{1}{\Box}=\mathrm{e} x0lim(1+x)x1=e0lim(1+)1=e

例1:(源于《考点分析》P19 # 三、1题)
lim ⁡ x → ∞ ( x + c x − c ) x = lim ⁡ x → ∞ ( 1 + 2 c x − c ) x = lim ⁡ x → ∞ ( 1 + 2 c x − c ) x − c 2 c ⋅ 2 c x x − c = e 2 c \lim \limits_{x \rightarrow \infty}\left(\frac{x+c}{x-c}\right)^{x}=\lim \limits_{x \rightarrow \infty}\left(1+\frac{2 c}{x-c}\right)^{x}=\lim \limits_{x \rightarrow \infty}\left(1+\frac{2 c}{x-c}\right)^{\frac{x-c}{2 c} \cdot \frac{2 cx}{x-c}}=\mathrm{e}^{2 c} xlim(xcx+c)x=xlim(1+xc2c)x=xlim(1+xc2c)2cxcxc2cx=e2c


回到目录
 

抓大头

抓大头可以简单理解为:分子分母分别取大的部分为大头,忽略小的部分。本质上是分子分母同时除以大头。

适用情况: 一般适用于自变量趋向于无穷,“ ∞ ∞ \frac{\infty}{\infty} ”类型,且分子或分母是几项之和的形式。

作答时的具体步骤: 若题目要求用极限的四则运算计算,则用方法2写过程;若无要求,可用方法1直接写答案。

一些例题:

例1:

lim ⁡ n → ∞ 2 n 2 + 8 n + 1 4 n 2 − 9 n − 1 \lim_{n\to ∞}\frac{2n^2+8n+1}{4n^2-9n-1} nlim4n29n12n2+8n+1

方法1:取大头。当 n → ∞ n\to ∞ n时,分子较大的部分是 2 n 2 2n^2 2n2,分母较大的部分是 4 n 2 4n^2 4n2,故 lim ⁡ n → ∞ 2 n 2 + 8 n + 1 4 n 2 − 9 n − 1 = ( lim ⁡ n → ∞ 2 n 2 4 n 2 ) = 1 2 \lim\limits_{n\to ∞}\frac{2n^2+8n+1}{4n^2-9n-1}=(\lim\limits_{n\to ∞}\frac{2n^2}{4n^2})=\frac{1}{2} nlim4n29n12n2+8n+1=(nlim4n22n2)=21
方法2:同除以大头。分子分母同时除以 n 2 n^2 n2 lim ⁡ n → ∞ 2 n 2 + 8 n + 1 4 n 2 − 9 n − 1 = lim ⁡ n → ∞ 2 + 8 n + 1 n 2 4 − 9 n − 1 n 2 = 1 2 \lim\limits_{n\to ∞}\frac{2n^2+8n+1}{4n^2-9n-1}=\lim\limits_{n\to ∞}\frac{2+\frac{8}{n}+\frac{1}{n^2}}{4-\frac{9}{n}-\frac{1}{n^2}}=\frac{1}{2} nlim4n29n12n2+8n+1=nlim4n9n212+n8+n21=21

例2:(源于第四次作业的5(3)题)

lim ⁡ n → ∞ 2 n + 1 3 n − 1 \lim_{n\to ∞}\frac{2^n+1}{3^n-1} nlim3n12n+1

方法1:取大头。分子中较大的部分是 2 n 2^n 2n,分母较大的部分是 3 n 3^n 3n,故 lim ⁡ n → ∞ 2 n + 1 3 n − 1 = ( lim ⁡ n → ∞ 2 n 3 n = lim ⁡ n → ∞ ( 2 3 ) n ) = 0 \lim\limits_{n\to ∞}\frac{2^n+1}{3^n-1}=(\lim\limits_{n\to ∞}\frac{2^n}{3^n}=\lim\limits_{n\to ∞}(\frac{2}{3})^n)=0 nlim3n12n+1=(nlim3n2n=nlim(32)n)=0
方法2:同除以大头。同除以 3 n 3^n 3n lim ⁡ n → ∞ 2 n + 1 3 n − 1 = lim ⁡ n → ∞ 2 n 3 n + 1 3 n 1 − 1 3 n = lim ⁡ n → ∞ ( 2 3 ) n + 1 3 n 1 − 1 3 n = 0 \lim\limits_{n\to ∞}\frac{2^n+1}{3^n-1}=\lim\limits_{n\to ∞}\frac{\frac{2^n}{3^n}+\frac{1}{3^n}}{1-\frac{1}{3^n}}=\lim\limits_{n\to ∞}\frac{(\frac{2}{3})^n+\frac{1}{3^n}}{1-\frac{1}{3^n}}=0 nlim3n12n+1=nlim13n13n2n+3n1=nlim13n1(32)n+3n1

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值