【课】小暑假汇总

这是一份关于微积分的课程总结,涵盖了参数方程求导、隐函数求导、微分定义及公式,以及一些不可导函数的例子。通过实例解析了如何求解导数,包括洛必达法则的应用,还探讨了复合函数和幂指函数的求导方法。
摘要由CSDN通过智能技术生成


课程内容目录汇总

点击跳转


 

小暑假 第28-30讲

本节目录

  • 求由参数方程确定的函数的导数
    • 由参数方程 f ( x ) = { x = φ ( t ) y = ψ ( t ) f(x)=\left\{ \begin{aligned} x = \varphi(t) \\ y = \psi(t) \\ \end{aligned} \right. f(x)={ x=φ(t)y=ψ(t) 确定的 y y y 关于 x x x 的函数
    • d y d x \frac{dy}{dx} dxdy,记住: d y d x = d y d t d y d t = φ ′ ( t ) ψ ′ ( t ) \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dy}{dt}}=\frac{\varphi^{'}(t)}{\psi ^{'}(t)} dxdy=dtdydtdy=ψ(t)φ(t)
  • 隐函数求导
    • 求一阶导: F ( x , y ) = 0 {\rm F}(x,y)=0 F(x,y)=0 两边关于 x x x 求导,得 H ( x , y , y ′ ) = 0 {\rm H}(x,y,y^{'})=0 H(x,y,y)=0 y ′ = G ( x , y ) y^{'}={\rm G}(x,y) y=G(x,y),即用 x , y x,y x,y 表示出 y ′ y^{'} y
    • 求二阶导: H ( x , y , y ′ ) = 0 {\rm H}(x,y,y^{'})=0 H(x,y,y)=0 两边关于 x x x 求导,得 y ′ ′ = S ( x , y , y ′ ) y^{''}={\rm S}(x,y,y^{'}) y′′=S(x,y,y),即用 x , y , y ′ x,y,y^{'} x,y,y 表示出 y ′ ′ y^{''} y′′

回到目录
 

小暑假 第31-33讲

本节目录

  • 由参数方程确定的函数求二阶导数
    • 由参数方程 f ( x ) = { x = φ ( t ) y = ψ ( t ) f(x)=\left\{ \begin{aligned} x = \varphi(t) \\ y = \psi(t) \\ \end{aligned} \right. f(x)={ x=φ(t)y=ψ(t) 确定的 y y y 关于 x x x 的函数
    • d y d x \frac{dy}{dx} dxdy,记住: d y d x = d y d t d y d t = φ ′ ( t ) ψ ′ ( t ) \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dy}{dt}}=\frac{\varphi^{'}(t)}{\psi ^{'}(t)} dxdy=dtdydtdy=ψ(t)φ(t)
    • d 2 y d x 2 \frac{d^2y}{dx^2} dx2d2y,注意: f ( x ) = { x = φ ( t ) d y d x = φ ′ ( t ) ψ ′ ( t ) f(x)=\left\{ \begin{aligned} & x = \varphi(t) \\ & \frac{dy}{dx} =\frac{\varphi^{'}(t)}{\psi ^{'}(t)}\\ \end{aligned} \right. f(x)= x=φ(t)dxdy=ψ(t)φ(t)
      d 2 y d x 2 = d ( d y d x ) d x = d ( d y d x ) d t d y d t = d ( φ ′ ( t ) ψ ′ ( t ) ) d t d y d t \frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{\frac{d(\frac{dy}{dx})}{dt}}{\frac{dy}{dt}}=\frac{\frac{d(\frac{\varphi^{'}(t)}{\psi ^{'}(t)})}{dt}}{\frac{dy}{dt}} dx2d2y=dxddxdy=dtdydtddxdy=dtdy
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值