课程内容目录汇总
小暑假 第28-30讲
本节目录
- 求由参数方程确定的函数的导数
- 由参数方程 f ( x ) = { x = φ ( t ) y = ψ ( t ) f(x)=\left\{ \begin{aligned} x = \varphi(t) \\ y = \psi(t) \\ \end{aligned} \right. f(x)={ x=φ(t)y=ψ(t) 确定的 y y y 关于 x x x 的函数
- 求 d y d x \frac{dy}{dx} dxdy,记住: d y d x = d y d t d y d t = φ ′ ( t ) ψ ′ ( t ) \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dy}{dt}}=\frac{\varphi^{'}(t)}{\psi ^{'}(t)} dxdy=dtdydtdy=ψ′(t)φ′(t)
- 隐函数求导
- 求一阶导: F ( x , y ) = 0 {\rm F}(x,y)=0 F(x,y)=0 两边关于 x x x 求导,得 H ( x , y , y ′ ) = 0 {\rm H}(x,y,y^{'})=0 H(x,y,y′)=0 和 y ′ = G ( x , y ) y^{'}={\rm G}(x,y) y′=G(x,y),即用 x , y x,y x,y 表示出 y ′ y^{'} y′
- 求二阶导: H ( x , y , y ′ ) = 0 {\rm H}(x,y,y^{'})=0 H(x,y,y′)=0 两边关于 x x x 求导,得 y ′ ′ = S ( x , y , y ′ ) y^{''}={\rm S}(x,y,y^{'}) y′′=S(x,y,y′),即用 x , y , y ′ x,y,y^{'} x,y,y′ 表示出 y ′ ′ y^{''} y′′
小暑假 第31-33讲
本节目录
- 由参数方程确定的函数求二阶导数
- 由参数方程 f ( x ) = { x = φ ( t ) y = ψ ( t ) f(x)=\left\{ \begin{aligned} x = \varphi(t) \\ y = \psi(t) \\ \end{aligned} \right. f(x)={ x=φ(t)y=ψ(t) 确定的 y y y 关于 x x x 的函数
- 求 d y d x \frac{dy}{dx} dxdy,记住: d y d x = d y d t d y d t = φ ′ ( t ) ψ ′ ( t ) \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dy}{dt}}=\frac{\varphi^{'}(t)}{\psi ^{'}(t)} dxdy=dtdydtdy=ψ′(t)φ′(t)
- 求 d 2 y d x 2 \frac{d^2y}{dx^2} dx2d2y,注意: f ( x ) = { x = φ ( t ) d y d x = φ ′ ( t ) ψ ′ ( t ) f(x)=\left\{ \begin{aligned} & x = \varphi(t) \\ & \frac{dy}{dx} =\frac{\varphi^{'}(t)}{\psi ^{'}(t)}\\ \end{aligned} \right. f(x)=⎩
⎨
⎧x=φ(t)dxdy=ψ′(t)φ′(t)
d 2 y d x 2 = d ( d y d x ) d x = d ( d y d x ) d t d y d t = d ( φ ′ ( t ) ψ ′ ( t ) ) d t d y d t \frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{\frac{d(\frac{dy}{dx})}{dt}}{\frac{dy}{dt}}=\frac{\frac{d(\frac{\varphi^{'}(t)}{\psi ^{'}(t)})}{dt}}{\frac{dy}{dt}} dx2d2y=dxd(dxdy)=dtdydtd(dxdy)=dtdy