背景
异常检测数据集:MVTec AD(细微变化和较大的结构缺陷),VisA(复杂结构及多个对象),MVTec LOCO AD(逻辑异常),DAGM
AeBAD数据集
特点:和MVTec比较,具有不同的背景,光照,视图。正常样本的域在训练和测试时也不同(关注同一类别域的变化)。
思想
提出了新的应用方向,比较新颖,这确实是异常检测的领域泛化性差的原因。即只从分布,匹配入手,而忽略了异常与周围的语义信息。
结构
网络的创新在于掩码与ViT的配合,以及特征的对比操作(不解码成图像了,而是解码成特征张量)。
与一般的重构相比,不同特征的比对信息更丰富,与一般的掩码相比,掩码位置不与其他位置共享。这两项均增加了重构的难度。
文章探讨了异常检测数据集如MVTecAD和VisA等带来的挑战,指出领域泛化性问题。提出一种创新网络结构,结合掩码与Transformer(ViT)以增强特征对比,而非传统重构。这种方法提升了不同特征的比对信息,并且掩码位置独立,增加了重构难度,从而改进了异常检测的性能。

1951

被折叠的 条评论
为什么被折叠?



