SparkCore之电商用户行为数据分析项目实战
1. 数据准备
- 本项目的数据是采集电商网站的用户行为数据,主要包含用户的4种行为:搜索、点击、下单和支付。
1)数据集
2)数据格式说明
(1)数据采用 _ 分割字段;
(2)每一行表示用户的一个行为,所以每一行只能是四种行为中的一种;
(3)如果搜索关键字是null,表示这次不是搜索;
(4)如果点击的品类id和产品id是-1,表示这次不是点击;
(5)下单行为来说一次可以下单多个产品,所以品类id和产品id都是多个,id之间使用 ,(逗号)分割;如果本次不是下单行为,则他们相关数据用null来表示;
(6)支付行为和下单行为类似。
3)数据详细字段说明
2. 需求一:Top10热门品类
1)需求说明
- 品类是指产品的分类,大型电商网站品类分多级,咱们的项目中品类只有一级,不同的公司可能对热门的定义不一样。我们按照每个品类的点击、下单、支付的量来统计热门品类。
- 例如,综合排名 = 点击数 * 20% + 下单数 * 30% + 支付数 * 50%
- 本项目需求优化为:先按照点击数排名,靠前的就排名高;如果点击数相同,再比较下单数;下单数再相同,就比较支付数。
2)需求分析
3)代码实现
- 思路:分别统计每个品类点击的次数,下单的次数和支付的次数。
import org.apache.spark.rdd.RDD
import org.apache.spark.{
SparkConf, SparkContext}
import scala.collection.mutable.ListBuffer
object Spark01_TopN_req1 {
def main(args: Array[String]): Unit = {
//创建SparkConf并设置App名称
val conf: SparkConf = new SparkConf().setAppName("SparkCoreTest").setMaster("local[*]")
//创建SparkContext,该对象是提交Spark App的入口
val sc: SparkContext = new SparkContext(conf)
//1.读取数据,创建RDD
val dataRDD: RDD[String] = sc.textFile("D:\MyWork\IdeaProjects\spark0105_exer\src\main\input\user_visit_action.txt")
//2.将读到的数据进行切分,并且将切分的内容封装为UserVisitAction对象
val actionRDD: RDD[UserVisitAction] = dataRDD.map {
line => {
val fields: Array[String] = line.split("_")
UserVisitAction(
fields(0),
fields(1).toLong,
fields(2),
fields(3).toLong,
fields(4),
fields(5),
fields(6).toLong,
fields(7).toLong,
fields(8),
fields(9),
fields(10),
fields(11),
fields(12).toLong
)
}
}
//3.判断当前这条日志记录的是什么行为,并且封装为结果对象 (品类,点击数,下单数,支付数)==>例如:如果是鞋的点击行为 (鞋,1,0,0)
//(鞋,1,0,0)
//(保健品,1,0,0)
//(鞋,0,1,0)
//(保健品,0,1,0)
//(鞋,0,0,1)=====>(鞋,1,1,1)
val infoRDD: RDD[CategoryCountInfo] = actionRDD.flatMap {
userAction => {
//判断是否为点击行为
if (userAction.click_category_id != -1) {
//封装输出结果对象
List(CategoryCountInfo(userAction.click_category_id + "", 1, 0, 0))
} else if (userAction.order_category_ids != "null") {
//坑:读取的文件应该是null字符串,而不是null对象
//判断是否为下单行为,如果是下单行为,需要对当前订单中涉及的所有品类Id进行切分
val ids: Array[String] = userAction.order_category_ids.split(",")
//定义一个集合,用于存放多个品类id封装的输出结果对象
val categoryCountInfoList: ListBuffer[CategoryCountInfo] = ListBuffer[CategoryCountInfo]()
//对所有品类的id进行遍历
for (id <- ids) {
categoryCountInfoList.append(CategoryCountInfo(id, 0, 1, 0))
}
categoryCountInfoList
} else if (userAction.pay_category_ids != "null") {
//支付
val ids: Array[String] = userAction.pay_category_ids.split(",")
//定义一个集合,用于存放多个品类id封装的输出结果对象
val categoryCountInfoList: ListBuffer[CategoryCountInfo] = ListBuffer[CategoryCountInfo]()
//对所有品类的id进行遍历
for (id <- ids)