738. 单调递增的数字+贪心,找到修改位置

文章介绍了一种在给定整数n下找到最大单调递增数的算法。通过检查数字的每一位,当发现非单调递增时,将前一位减一,并将后续所有位设为9,以保证单调性。提供了暴力和贪心两种解法,其中贪心解法更有效。
摘要由CSDN通过智能技术生成

https://leetcode.cn/problems/monotone-increasing-digits/

题目要求

当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。

给定一个整数 n ,返回 小于或等于 n 的最大数字,且数字呈 单调递增 。

暴力

class Solution {
    public int monotoneIncreasingDigits(int n) {
        for (int i = n; i > 0; i--) {
            if (isIncrease(i))
                return i;
        }
        return -1;
    }

    public boolean isIncrease(int n) {
        int cur, pre = Integer.MAX_VALUE;
        while (n > 0) {
            cur = n % 10;
            if (cur <= pre) {
                n /= 10;
                pre = cur;
            } else
                return false;
        }
        return true;
    }
}
  • 暴力解法会超时

贪心:找到修改位置

class Solution {
    public int monotoneIncreasingDigits(int n) {
        StringBuilder str = new StringBuilder(String.valueOf(n));
        int len = str.length();
        int start = str.length();
        for (int i = len - 1; i > 0; i--) {
            if (str.charAt(i - 1) > str.charAt(i)) {
                str.setCharAt(i - 1, (char) (str.charAt(i - 1) - 1));
                start = i;
            }
        }
        for (int i = start; i < len; i++) {
            str.setCharAt(i, '9');
        }
        return Integer.parseInt(str.toString());
    }
}
  • 例如98,一旦出现str.charAt(i - 1) > str.charAt(i)的情况(非单调递增),首先想让str.charAt(i - 1)--,然后str.charAt(i)给为9,这样这个整数就是89,即小于98的最大的单调递增整数。
  • 所以只要找到第一个修改的位置,这个位置之后的数字都修改为9即可;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值