Paper with notes on Cross-Modal Retrieval
Background
这里研究的跨模态检索主要是图像-文本匹配(Image-Text Matching)。跨模态检索模型的输入是两种模态信息(图片和句子),输出是他们的相似度。继而利用模型在一堆图片/句子中挑出与待查询句子/图片最匹配的结果。因此评价指标也通常有Text-Retrieval 和 Image Retrieval两个方面。跨模态检索后的结果为图1所示。


Mainstream Methods
目前主流的跨模态检索模型,都有一个共同的目标,即将两个模态的数据特征提取到同一特征空间,然后在这特征空间内进行相似度计算。总的来说,不同的模型都进行改进的方法,都在于如何什么提取出更利于匹配的特征,具体来说,模型的pipeline大至如下:

本文探讨了跨模态检索领域的最新进展,重点介绍了ECCV2020和CVPR2020的两篇论文。这两篇论文提出将图像和文本特征映射到共享空间,利用图结构网络捕捉语义关联,以提升图像-文本匹配的性能。文章分析了共识知识和词组关联如何改善匹配准确度,并讨论了未来可能的研究方向。
最低0.47元/天 解锁文章
5039

被折叠的 条评论
为什么被折叠?



