训练神经网络--优化方法及其优化器

目录

前言

1.随机梯度下降法--SGD

 2.SGD+Momentum算法

3.AdaGrad算法

 3.RMSProp算法

4.Adam算法


前言

在训练神经网络的时候,有归一化,正则化等优化模型性能的方法,但是在做这些优化之前,我们需要确定一种优化方法或者说是优化器,优化方法会对模型的 性能有不少的影响,pytorch里面自带了不少优化器,可以自动的更新梯度,loss等参数,是比较方便的。

1.随机梯度下降法--SGD

对比批量梯度下降法,假设从一批训练样本n中随机选取一个样本模型参数为

, 代价函数为,梯度为,学习率为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值