目录
前言
在训练神经网络的时候,有归一化,正则化等优化模型性能的方法,但是在做这些优化之前,我们需要确定一种优化方法或者说是优化器,优化方法会对模型的 性能有不少的影响,pytorch里面自带了不少优化器,可以自动的更新梯度,loss等参数,是比较方便的。
1.随机梯度下降法--SGD
对比批量梯度下降法,假设从一批训练样本n中随机选取一个样本,模型参数为
, 代价函数为,梯度为
,学习率为
目录
在训练神经网络的时候,有归一化,正则化等优化模型性能的方法,但是在做这些优化之前,我们需要确定一种优化方法或者说是优化器,优化方法会对模型的 性能有不少的影响,pytorch里面自带了不少优化器,可以自动的更新梯度,loss等参数,是比较方便的。
对比批量梯度下降法,假设从一批训练样本n中随机选取一个样本,模型参数为
, 代价函数为,梯度为
,学习率为