机器学习算法------6.4 模型评估(误差平方和、肘方法、轮廓系数法、CH系数)

6.4 模型评估

学习目标

  • 知道模型评估中的SSE、“肘”部法、SC系数和CH系数的实现原理

1 误差平方和(SSE \The sum of squares due to error):

举例:(下图中数据-0.2, 0.4, -0.8, 1.3, -0.7, 均为真实值和预测值的差)

在这里插入图片描述

在k-means中的应用:

在这里插入图片描述

在这里插入图片描述

公式各部分内容:

在这里插入图片描述

上图中: k=2

  • SSE图最终的结果,对图松散度的衡量.(eg: SSE(左图)<SSE(右图))

  • SSE随着聚类迭代,其值会越来越小,直到最后趋于稳定

  • 如果质心的初始值选择不好,SSE只会达到一个不怎么好的局部最优解.

在这里插入图片描述

2 “肘”方法 (Elbow method) — K值确定

在这里插入图片描述

(1)对于n个点的数据集,迭代计算k from 1 to n,每次聚类完成后计算每个点到其所属的簇中心的距离的平方和;

(2)平方和是会逐渐变小的,直到k==n时平方和为0,因为每个点都是它所在的簇中心本身。

(3)在这个平方和变化过程中,会出现一个拐点也即“肘”点,下降率突然变缓时即认为是最佳的k值

在决定什么时候停止训练时,肘形判据同样有效,数据通常有更多的噪音,在增加分类无法带来更多回报时,我们停止增加类别

3 轮廓系数法(Silhouette Coefficient)

结合了聚类的凝聚度(Cohesion)和分离度(Separation),用于评估聚类的效果:

在这里插入图片描述

目的:

​ 内部距离最小化,外部距离最大化

在这里插入图片描述

计算样本i到同簇其他样本的平均距离ai,ai 越小样本i的簇内不相似度越小,说明样本i越应该被聚类到该簇。

计算样本i到最近簇Cj 的所有样本的平均距离bij,称样本i与最近簇Cj 的不相似度,定义为样本i的簇间不相似度:bi =min{bi1, bi2, …, bik},bi越大,说明样本i越不属于其他簇。

求出所有样本的轮廓系数后再求平均值就得到了平均轮廓系数

平均轮廓系数的取值范围为[-1,1],系数越大,聚类效果越好。

簇内样本的距离越近,簇间样本距离越远

案例:

下图是500个样本含有2个feature的数据分布情况,我们对它进行SC系数效果衡量:

在这里插入图片描述

n_clusters = 2 The average silhouette_score is : 0.7049787496083262

n_clusters = 3 The average silhouette_score is : 0.5882004012129721

n_clusters = 4 The average silhouette_score is : 0.6505186632729437

n_clusters = 5 The average silhouette_score is : 0.56376469026194

n_clusters = 6 The average silhouette_score is : 0.4504666294372765

n_clusters 分别为 2,3,4,5,6时,SC系数如下,是介于[-1,1]之间的度量指标:

每次聚类后,每个样本都会得到一个轮廓系数,当它为1时,说明这个点与周围簇距离较远,结果非常好,当它为0,说明这个点可能处在两个簇的边界上,当值为负时,暗含该点可能被误分了。

从平均SC系数结果来看,K取3,5,6是不好的,那么2和4呢?

k=2的情况:

在这里插入图片描述

k=4的情况:

在这里插入图片描述

n_clusters = 2时,第0簇的宽度远宽于第1簇;

n_clusters = 4时,所聚的簇宽度相差不大,因此选择K=4,作为最终聚类个数。

4 CH系数(Calinski-Harabasz Index)

Calinski-Harabasz:

类别内部数据的协方差越小越好,类别之间的协方差越大越好(换句话说:类别内部数据的距离平方和越小越好,类别之间的距离平方和越大越好),

这样的Calinski-Harabasz分数s会高,分数s高则聚类效果越好。

在这里插入图片描述

tr为矩阵的迹, Bk为类别之间的协方差矩阵,Wk为类别内部数据的协方差矩阵;

m为训练集样本数,k为类别数。

在这里插入图片描述

使用矩阵的迹进行求解的理解:

矩阵的对角线可以表示一个物体的相似性

在机器学习里,主要为了获取数据的特征值,那么就是说,在任何一个矩阵计算出来之后,都可以简单化,只要获取矩阵的迹,就可以表示这一块数据的最重要的特征了,这样就可以把很多无关紧要的数据删除掉,达到简化数据,提高处理速度。

CH需要达到的目的:

用尽量少的类别聚类尽量多的样本,同时获得较好的聚类效果。


5 小结

  • sse【知道】
    • 误差平方和的值越小越好
  • 肘部法【知道】
    • 下降率突然变缓时即认为是最佳的k值
  • SC系数【知道】
    • 取值为[-1, 1],其值越大越好
  • CH系数【知道】
    • 分数s高则聚类效果越好
    • CH需要达到的目的:用尽量少的类别聚类尽量多的样本,同时获得较好的聚类效果。
  • 15
    点赞
  • 63
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 机器学习模型评估、选择和验证是指评估模型的性能、从多个模型中选择最佳模型,并验证模型的泛化能力。常用的评估方法包括准确率、精确率、召回率、F1 分数、ROC 曲线和 AUC 等。常用的选择方法包括交叉验证、超参数调优、学习曲线分析等。 ### 回答2: 机器学习的目标是通过训练来构建模型,以便能够高效地预测未知数据。但是,模型的准确性不仅取决于所使用的算,还取决于其它因素,例如数据和参数设置。 模型评估能够帮助我们了解模型性能的好坏。评估算的过程通常涉及到数据划分、交叉验证和各种评估指标。一般来说,数据划分的过程将数据集拆分成训练集和测试集。用训练集来构建模型并进行参数调整,然后使用测试集来衡量模型的性能。交叉验证是在数据集合上的一个更安全和更可靠的方法,它将原始数据集划分成K个互斥的子集,并使用K-1个子集来训练模型,用剩余的子集来评估模型的性能。 选择正确的模型非常关键,因为模型的性能可以直接影响结果的准确性。选择模型的一个重要因素是如何表示数据集。数据可以使用多种方式表示,而不同的数据表示方式有不同的优劣。选择适当的模型是当然的,但是我们还应该使用技术来优化模型,并防止模型过度拟合或欠拟合。 模型验证是评估模型如何执行任务的最终步骤。验证后,我们可以使用模型进行预测并将其应用于新数据。如果模型的性能不符合要求,可以通过重新评估、更改数据集或改变模型参数来尝试改善。模型验证是机器学习流程中非常重要的一部分,可以确保我们的模型效果良好,从而为我们提供可靠的预测结果。 总之,机器学习是一种建立复杂模型的方法,不同的算、数据表示方式和参数会影响其性能。为了找到最佳模型,我们需要进行模型评估、选择和验证等工作。这些步骤是机器学习流程的关键组成部分,可以帮助我们构建高效且准确的模型,从而应对各种实际应用场景。 ### 回答3: 机器学习是一种人工智能领域的重要技术,它允许计算机从历史数据中学习,建立预测模型,并用于未来的数据预测和决策。模型评估、选择与验证是机器学习过程中的重要一环,以保证模型的准确性、稳定性和泛化能力。 模型评估的目的是检验模型的表现,并度量其优劣。常用的评估指标包括精确度、召回率、F1值等,这些指标可以用于比较不同模型之间的性能表现。评估模型时,通常需要将数据集划分为训练集和测试集,训练集用于训练模型,而测试集用于评估模型性能。评估模型的结果可以指导我们调整模型的参数,提高模型的预测精度。 模型选择是在多个模型中选择最合适的模型。常用的模型选择方法包括交叉验证、留一等。交叉验证是将数据集分成k个子集,每个子集轮流作为测试集进行模型评估,其余部分用于训练模型,最后将测试集误差取平均值作为综合误差来评估模型的性能。 模型验证是对模型的泛化能力的验证。泛化能力是指模型对未知数据的预测精度,即模型是否能够对新数据进行较好的预测。在模型验证中,需要将数据集划分为训练集、验证集和测试集。在训练集中训练模型,在验证集上调整模型参数,并在测试集上验证模型的泛化能力。常用的验证方法包括留存、k折交叉验证等。 综上所述,模型评估、选择与验证对于机器学习中的预测模型非常重要。这些技术可以保证模型的准确性和稳定性,并提高模型的泛化能力,为数据分析和预测提供可靠依据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值