python+手动选取两张图像的对应特征点并获取仿射矩阵参数

import cv2
from pylab import *
#手动选取配准点进行配准融合
srcpoint = []
destpoint = []
sourcepoint = []
targetpoint = []
#显示图像
def viewImage(image):
    cv2.namedWindow('Display', cv2.WINDOW_KEEPRATIO)
    cv2.imshow('Display', image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
#图像1的点击事件
def click_event_srcI1gray(event, x, y, flags, params):
    global srccount
    if event == cv2.EVENT_LBUTTONDOWN:
        srcpoint.append((x,y))
        font = cv2.FONT_HERSHEY_SIMPLEX
        cv2.putText(I1gray, str(x) + ',' +
                       str(y), (x, y), font,
                        0.5, (255, 0, 0), 1)
        cv2.imshow('Base Image', I1gray)
#图像2的点击事件
def click_event_dstI2gray(event, x, y, flags, params):
    global destpoint
    if event == cv2.EVENT_LBUTTONDOWN:
        destpoint.append((x,y))
        font = cv2.FONT_HERSHEY_SIMPLEX
        cv2.putText(I2gray, str(x) + ',' +
                       str(y), (x, y), font,
                        0.5, (255, 0, 0), 1)
        cv2.imshow('Target Image', I2gray)
def homography_manual():
    global sourcepoint, targetpoint
    sourcepoint=np.array(srcpoint)
    targetpoint=np.array(destpoint)
    #h为仿射矩阵
    h,status=cv2.findHomography(sourcepoint,targetpoint)
    print(h)
    image_output=cv2.warpPerspective(I1gray,h,(I2gray.shape[1],I2gray.shape[0]))
    viewImage(image_output)
    rate = 0.5
    #两张图像重合显示
    overlapping = cv2.addWeighted(I2gray, rate, image_output, 1 - rate, 0)
    viewImage(overlapping)
    
if __name__ == "__main__":
		#读取图像
    [I1gray, I2gray, I1rgb, I2rgb, path1, path2] = read.readImage()
    cv2.namedWindow('Base Image', 0)
    # cv2.resizeWindow('Base Image', 640, 512)  # 自己设定窗口图片的大小
    cv2.imshow('Base Image', I1gray)
    cv2.setMouseCallback('Base Image', click_event_srcI1gray)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    cv2.namedWindow('Target Image', 0)
    # cv2.resizeWindow('Target Image', 640, 512)  # 自己设定窗口图片的大小
    cv2.imshow('Target Image', I2gray)
    cv2.setMouseCallback('Target Image', click_event_dstI2gray)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    homography_manual()

实验结果:
弹出窗口显示图像,鼠标点击对应特征点,并显示位置信息
在这里插入图片描述重叠效果:
请添加图片描述
记得点个赞!

好的,以下是使用 Python 和 OpenCV 计算图像匹配旋转矩阵和平移矩阵的示例代码: ``` import cv2 # 读取原始图像和目标图像 img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE) img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE) # 初始化 SIFT 特征提取器 sift = cv2.xfeatures2d.SIFT_create() # 提取原始图像和目标图像的 SIFT 特征点和特征描述子 kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) # 初始化匹配器 matcher = cv2.DescriptorMatcher_create(cv2.DescriptorMatcher_FLANNBASED) # 对两个图像的特征描述子进行匹配 matches = matcher.match(des1, des2) # 选取最好的前 50 个匹配点 matches = sorted(matches, key=lambda x: x.distance)[:50] # 提取匹配点在原始图像和目标图像中的坐标 src_pts = [kp1[m.queryIdx].pt for m in matches] dst_pts = [kp2[m.trainIdx].pt for m in matches] # 计算仿射变换矩阵 M = cv2.estimateAffine2D(src_pts, dst_pts)[0] # 输出旋转矩阵和平移矩阵 print('旋转矩阵:') print(M[:, :2]) print('平移矩阵:') print(M[:, 2]) # 在原始图像上画出匹配点和对应的线段 img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) cv2.imshow('matches', img3) cv2.waitKey() cv2.destroyAllWindows() ``` 在上面的示例代码中,我们首先使用 SIFT 特征提取提取原始图像和目标图像特征点和特征描述子,然后对它们进行匹配。接着,我们选取最好的前 50 个匹配点,并提取它们在原始图像和目标图像中的坐标。最后,使用 `cv2.estimateAffine2D()` 函数计算出匹配点之间的仿射变换矩阵,即旋转矩阵和平移矩阵,并将其输出。同时,我们在原始图像上画出匹配点和对应的线段,以便观察匹配结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值