本文内容对应我的博客中微积分笔记总目录下的第四章,积分的应用。
4. 积分的应用
4.1 平均值和加权平均值(Averages and Weighted Averages)
连续平均值的定义:
Continuous Average
=
1
b
−
a
∫
a
b
f
(
x
)
d
x
\text{Continuous Average}=\frac{1}{b-a}\int_a^bf(x)dx
Continuous Average=b−a1∫abf(x)dx
注意,平均值与选择的变量有关,比如求半圆高度的平均值,对
x
x
x轴和对圆心角
θ
\theta
θ会算出不同的结果,这是因为,对
x
x
x轴而言,分母是半圆的直径,而对于圆心角
θ
\theta
θ而言,分母则是半圆的周长。
加权平均值的定义:
Weighted Average
=
∫
a
b
f
(
x
)
w
(
x
)
d
x
∫
a
b
w
(
x
)
d
x
\text{Weighted Average}=\frac{\int_a^bf(x)w(x)dx}{\int_a^bw(x)dx}
Weighted Average=∫abw(x)dx∫abf(x)w(x)dx
加权平均值在概率问题中非常常见。
4.2 求两条曲线包围下的面积
如下图所示,
我们要求的面积为蓝色区域,除此之外,我们还需要知道两条曲线的交点的坐标。之后我们可以得到,
Area
=
∫
a
b
(
f
(
x
)
−
g
(
x
)
)
⎵
Height
d
x
⎵
B
a
s
e
\text{Area}=\int_a^b\underbrace{(f(x)-g(x))}_{\text{Height}}\underbrace{dx}_{Base}
Area=∫abHeight
(f(x)−g(x))Base
dx
在具体情况中,一定要选好哪个变量是自变量,有一些情况需要我们颠倒横轴纵轴来帮助我们简化面积公式。比如下图,求
x
=
y
2
x=y^2
x=y2 与
y
=
x
−
2
y=x-2
y=x−2 所包围形成的面积
很明显,正常求解过程中,横向的抛物线从正常的角度来看不能被看成函数,而且需要把面积竖直分成两部分,但是交换
X
,
Y
X,\ Y
X, Y轴的顺序反而会大大简化运算(把
y
y
y 看作自变量)。
4.3 求二维曲线轨迹长度(Arc Length)、三维曲面面积和体积(Surface and Volume)
在具体求轨迹长度之前,需要先引入参数方程,因为不同形状的曲线或者是之后多变量微积分中的曲面,根据选取的坐标系的不同,运算量也会不同。比如矩形类或者长方体更适合常用的笛卡尔坐标系( x y z xyz xyz坐标系),而圆柱类,球类则更适合柱坐标系和球坐标系。
4.3.1 坐标系和参数方程(Coordinates and Parametric Equations)
极坐标和笛卡尔坐标系(Polar Coordinates and Cartesian Coordinates)
因为是单变量微积分,坐标系只是二维的。对于那些通过旋转或者依赖角度而生成的曲线来说,把笛卡尔二维坐标系转化为极坐标是非常方便的。
极坐标转化为笛卡尔坐标的公式为:
x
=
r
cos
θ
x=r\cos \theta
x=rcosθ
y
=
r
sin
θ
y=r\sin \theta
y=rsinθ
笛卡尔坐标转化为极坐标的公式为:
r
=
x
2
+
y
2
r=\sqrt{x^2+y^2}
r=x2+y2
θ
=
tan
−
1
y
x
\theta=\tan^{-1}\frac{y}{x}
θ=tan−1xy
其中
r
r
r是到坐标原点的距离(一般来说范围是
0
≤
r
≤
∞
0\leq r\leq \infty
0≤r≤∞),
θ
\theta
θ 是点与原点的连线和水平轴所成的角(一般来说范围是
−
π
≤
θ
≤
π
-\pi\leq\theta\leq\pi
−π≤θ≤π 或者
0
≤
θ
≤
2
π
0\leq\theta\leq 2\pi
0≤θ≤2π)
例如,将
y
=
1
y=1
y=1转化到极坐标中
y
=
1
=
r
sin
θ
y=1=r\sin\theta
y=1=rsinθ
r
=
1
sin
θ
r=\frac{1}{\sin\theta}
r=sinθ1
参数方程
参数方程的目的是将原本的两个变量
x
,
y
x,\ y
x, y分别表示成另外一个变量(比如说时间
t
t
t)的函数,这种方式在实际应用中是非常有用的,因为我们可以通过中间变量来获得
x
,
y
x,\ y
x, y的关系:
{
x
=
x
(
t
)
y
=
y
(
t
)
\left\{ \begin{aligned} x&=x(t)\\ y&=y(t) \end{aligned} \right.
{xy=x(t)=y(t)
常见的例子就是圆的参数方程
{
x
=
r
cos
t
y
=
r
sin
t
\left\{ \begin{aligned}x&=r\cos t\\y&=r\sin t\end{aligned}\right.
{xy=rcost=rsint
也就是
x
2
+
y
2
=
r
2
x^2+y^2=r^2
x2+y2=r2。
4.3.2 弧长对应的微分形式
1. 笛卡尔坐标系下求曲线弧长的微分形式是:
(
Δ
s
)
2
≈
(
Δ
x
)
2
+
(
Δ
y
)
2
(\Delta s)^2\approx(\Delta x)^2+(\Delta y)^2
(Δs)2≈(Δx)2+(Δy)2
转化成微分形式:
d
s
2
=
d
x
2
+
d
y
2
→
d
s
=
d
x
2
+
d
y
2
ds^2= dx^2+dy^2\quad\to\quad ds=\sqrt{dx^2+dy^2}
ds2=dx2+dy2→ds=dx2+dy2
d
s
=
1
+
d
y
2
d
x
2
d
x
=
1
+
d
y
2
d
x
2
d
x
=
1
+
f
′
(
x
)
2
d
x
ds=\sqrt{1+\frac{dy^2}{dx^2}}\ dx=\sqrt{1+\frac{dy^2}{dx^2}}\ dx=\sqrt{1+f'(x)^2}\ dx
ds=1+dx2dy2 dx=1+dx2dy2 dx=1+f′(x)2 dx
2. 极坐标系下求曲线弧长的微分形式是:
d
s
=
r
d
θ
ds=rd\theta
ds=rdθ
简单的弧长计算。
3. 参数方程下求曲线弧长的微分形式是:
d
s
=
d
x
2
+
d
y
2
=
(
d
x
2
d
t
2
)
+
(
d
y
2
d
t
2
)
d
t
ds=\sqrt{dx^2+dy^2}=\sqrt{\Big(\frac{dx^2}{dt^2}\Big)+\Big(\frac{dy^2}{dt^2}\Big)}\ dt
ds=dx2+dy2=(dt2dx2)+(dt2dy2) dt
4.3.3 壳层法和圆盘法(Methods of Shells and Disks)——应对旋转类几何问题
普通切割法
普通切割法源于最简单的微分方法,将一个三维物体沿某个方向切成一小片。这种方法适用于竖直堆砌的底面不为圆类的物体
Δ
V
≈
A
⋅
Δ
x
\Delta V\approx A\cdot\Delta x
ΔV≈A⋅Δx这里
A
A
A是每一小片的底面积,也是关于某一变量
x
x
x的函数,
Δ
x
\Delta x
Δx是厚度。上面的式子取极限再积分之后就是
V
=
∫
A
(
x
)
d
x
V=\int A(x)dx
V=∫A(x)dx
壳层法
壳层法求体积
壳层法求体积一般用于曲线绕竖直轴旋转的情况,如下图所示。
壳层法本质就是叠加每一层壳(通俗理解就是薄薄的一个空心圆柱体),微分的空心圆柱体的体积公式类似于厚度极小的长方体,由侧面积乘厚度得到。
d
V
=
2
π
x
f
(
x
)
⎵
Side Area
⋅
d
x
⎵
Thickness
dV=\underbrace{2\pi xf(x)}_{\text{Side Area}}\cdot \underbrace{dx}_{\text{Thickness}}
dV=Side Area
2πxf(x)⋅Thickness
dx
通过积分可以得到公式:
V
=
∫
a
b
2
π
x
f
(
x
)
⎵
Side Area
⋅
d
x
⎵
Thickness
V=\int_a^b\underbrace{2\pi xf(x)}_{\text{Side Area}}\cdot \underbrace{dx}_{\text{Thickness}}
V=∫abSide Area
2πxf(x)⋅Thickness
dx
(注意!这里的
f
(
x
)
f(x)
f(x)只是表示高度,不一定和曲线的表达式一样,比如上图中的
f
(
x
)
=
a
−
x
2
f(x)=a-x^2
f(x)=a−x2而不是
f
(
x
)
=
x
2
f(x)=x^2
f(x)=x2)
圆盘法
圆盘法求体积
圆盘法一般用于曲线绕水平轴旋转的情况。如下图,
可以发现旋转后的体积可以通过对
x
x
x轴某处的一小块圆盘做积分得到。微分形式是:
d
V
=
π
f
(
x
)
2
⎵
Base Area
⋅
d
x
⎵
t
h
i
c
k
n
e
s
s
dV=\underbrace{\pi f(x)^2}_{\text{Base Area}}\cdot\underbrace{dx}_{thickness}
dV=Base Area
πf(x)2⋅thickness
dx
积分可以得到:
V
=
∫
a
b
π
f
(
x
)
2
⎵
Base Area
⋅
d
x
⎵
t
h
i
c
k
n
e
s
s
V=\int_a^b\underbrace{\pi f(x)^2}_{\text{Base Area}}\cdot\underbrace{dx}_{thickness}
V=∫abBase Area
πf(x)2⋅thickness
dx
圆盘法求曲面面积(Surface Area)
对于旋转体的曲面面积,可以类比圆柱的侧面面积公式,底面周长与高度的乘积。而对于一般旋转体而言,就是一小段弧长作为圆盘的厚度。
如果物体是绕
y
y
y轴而成的,面积微元为(用
d
s
ds
ds表示一小段弧长):
d
S
=
2
π
x
⎵
Circumference
⋅
d
s
⎵
Height
dS=\underbrace{2\pi x}_{\text{Circumference}}\cdot \underbrace{ds}_{\text{Height}}
dS=Circumference
2πx⋅Height
ds
积分之后就得到:
S
=
∫
a
b
2
π
x
⎵
Circumference
⋅
d
s
⎵
Height
S=\int_a^b\underbrace{2\pi x}_{\text{Circumference}}\cdot \underbrace{ds}_{\text{Height}}
S=∫abCircumference
2πx⋅Height
ds
如果物体是绕
x
x
x轴而成的,面积微元为(用
d
s
ds
ds表示一小段弧长):
d
S
=
2
π
y
⎵
Circumference
⋅
d
s
⎵
Height
dS=\underbrace{2\pi y}_{\text{Circumference}}\cdot \underbrace{ds}_{\text{Height}}
dS=Circumference
2πy⋅Height
ds
积分之后就得到:
S
=
∫
a
b
2
π
y
⎵
Circumference
⋅
d
s
⎵
Height
S=\int_a^b\underbrace{2\pi y}_{\text{Circumference}}\cdot \underbrace{ds}_{\text{Height}}
S=∫abCircumference
2πy⋅Height
ds
参数方程下的曲面面积
如果变量 x , y x,\ y x, y表示成了参数方程,这时候只需要把弧长公式换成参数方程下的情况即可,其他思路不变。
4.4 求概率(Bell Curve)
(积分应用之概率求解请参考上面的链接。)
4.5 微分方程简介(Differential Equations)
简单举例
大三大四学控制的时候印象最深刻的就是微分方程组了。微分方程如其名,就是把函数的微分引入方程当中,比如说对汽车的控制需要知道加速度,速度,角速度,角加速度的信息,而这些信息都是关于位移或者角度的微分。
本节只是对微分方程的简介,如果以后听了MIT 18.03微分方程这门课后,我也会专门做一下笔记。
经典的一个微分方程的例子是:
(
d
d
x
+
x
)
y
=
0
\Big(\frac{d}{dx}+x\Big)y=0
(dxd+x)y=0
其中
(
d
d
x
+
x
)
\Big(\frac{d}{dx}+x\Big)
(dxd+x)被称为湮没算符(annihilation operator)
微分方程的解法核心就是分离变量(Separation of Variables),本例中,打开括号后方程可以写成:
d
y
d
x
=
−
x
y
→
d
y
y
=
−
x
d
x
\frac{dy}{dx}=-xy\quad\to\quad\frac{dy}{y}=-xdx
dxdy=−xy→ydy=−xdx
两边同时积分,
∫
d
y
y
=
−
∫
x
d
x
\int \frac{dy}{y}=-\int xdx
∫ydy=−∫xdx
ln
y
=
−
x
2
2
+
C
(
assume
y
>
0
)
\ln y=-\frac{x^2}{2}+C\quad (\text{assume} \ y>0)
lny=−2x2+C(assume y>0)
y
=
exp
(
−
x
2
2
+
C
)
=
e
c
e
−
x
2
2
=
A
e
−
x
2
2
(
A
=
e
c
)
y=\exp(-\frac{x^2}{2}+C)=e^ce^{-\frac{x^2}{2}}=Ae^{-\frac{x^2}{2}}\quad(A=e^c)
y=exp(−2x2+C)=ece−2x2=Ae−2x2(A=ec)
结果类似标准正太分布。
分离变量
一般来说,微分方程的形式为:
d
y
d
x
=
f
(
x
)
g
(
y
)
\frac{dy}{dx}=f(x)g(y)
dxdy=f(x)g(y)
分离变量之后再积分为:
∫
d
y
g
(
y
)
=
∫
f
(
x
)
d
x
\int \frac{dy}{g(y)}=\int f(x)dx
∫g(y)dy=∫f(x)dx
令:
H
(
y
)
=
∫
d
y
g
(
y
)
;
F
(
x
)
=
∫
f
(
x
)
d
x
H(y)=\int \frac{dy}{g(y)};\ \ F(x)=\int f(x)dx
H(y)=∫g(y)dy; F(x)=∫f(x)dx
H
(
y
)
=
F
(
x
)
+
C
H(y)=F(x)+C
H(y)=F(x)+C就是微分方程的隐式解(Implicit Solution)