换元法求解积分
这一篇将会结合一些例题总结如何用换元法求解积分,其中最重要的就是三角换元了。听完了MIT 18.01相关的课程后又觉得大一白学了哈哈。Let’s start it!
简单换元法
思路
当我们遇到一些形如 ∫ f ( x ) d x \int f(x)dx ∫f(x)dx 的积分表达式并不能通过我们已知的导数和积分对儿来求解的时候(常见的对儿有 x n x^n xn, l n ( x ) ln(x) ln(x)等等),我们就需要用 u ( x ) u(x) u(x)把 f ( x ) d x f(x)dx f(x)dx 中的自变量 x x x 替换掉,找到那些反导数好求解的被积函数 ,即 g ( ⋅ ) g(\cdot) g(⋅),然后通过 ∫ g ( u ( x ) ) d u ( x ) \int g(u(x))du(x) ∫g(u(x))du(x) 来间接求解原函数 f ( x ) f(x) f(x)的反导数或定积分。
举例
(本例来自于18.01讲义session 38a)
求积分:
∫
x
3
(
x
4
+
2
)
5
d
x
\int x^3(x^4+2)^5dx
∫x3(x4+2)5dx
本例中
f
(
x
)
=
x
3
(
x
4
+
2
)
5
f(x)= x^3(x^4+2)^5
f(x)=x3(x4+2)5,我们并不能直接找到其反导数(或不定积分),这时就需要想办法换元。
令
u
(
x
)
=
x
4
+
2
u(x)=x^4+2
u(x)=x4+2,或简记为
u
=
x
4
+
2
u=x^4+2
u=x4+2,等号两边同时取微分,可以得到:
d
u
=
4
x
3
d
x
du=4x^3dx
du=4x3dx
代入原式,
∫
x
3
(
x
4
+
2
)
5
d
x
=
∫
u
5
d
u
4
=
1
4
∫
u
5
d
u
=
1
24
u
6
+
C
\int x^3(x^4+2)^5dx=\int u^5\frac{du}{4}=\frac{1}{4}\int u^5du=\frac{1}{24}u^6+C
∫x3(x4+2)5dx=∫u54du=41∫u5du=241u6+C
把
u
u
u换回
x
x
x,可以得到最后答案
∫
x
3
(
x
4
+
2
)
5
d
x
=
1
24
(
x
4
+
2
)
6
+
C
\int x^3(x^4+2)^5dx=\frac{1}{24}(x^4+2)^6+C
∫x3(x4+2)5dx=241(x4+2)6+C
三角换元法
上面的换元法可以说非常直接了,但换元法的重中之重我觉得还是三角换元,思路是在原函数 f ( x ) f(x) f(x) 中找到符合三角恒等式的规律,然后将自变量 x x x 替换成对应的三角函数。接下来我先总结一下三角换元中比较好用的三角恒等式,再具体介绍常用的换元类型,最后说一下一些特殊情况。
基本三角恒等式
这里借此机会我先回顾下常用的三角恒等式:
c
o
s
2
θ
+
s
i
n
2
θ
=
1
cos^2\theta+sin^2\theta=1
cos2θ+sin2θ=1
c
o
s
2
θ
=
c
o
s
2
θ
−
s
i
n
2
θ
cos2\theta=cos^2\theta-sin^2\theta
cos2θ=cos2θ−sin2θ
c
o
s
2
θ
=
1
+
c
o
s
2
θ
2
,
s
i
n
2
θ
=
1
−
c
o
s
2
θ
2
cos^2\theta=\frac{1+cos2\theta}{2},sin^2\theta=\frac{1-cos2\theta}{2}
cos2θ=21+cos2θ,sin2θ=21−cos2θ
s
e
c
θ
=
1
c
o
s
θ
,
t
a
n
θ
=
s
i
n
θ
c
o
s
θ
sec\theta=\frac{1}{cos\theta}, tan\theta=\frac{sin\theta}{cos\theta}
secθ=cosθ1,tanθ=cosθsinθ
t
a
n
2
θ
=
s
e
c
2
θ
−
1
tan^2\theta=sec^2\theta-1
tan2θ=sec2θ−1
d
d
θ
t
a
n
θ
=
s
e
c
2
θ
d
θ
\frac{d}{d\theta}tan\theta=sec^2\theta d\theta
dθdtanθ=sec2θdθ
d
d
θ
s
e
c
θ
=
s
e
c
θ
t
a
n
θ
d
θ
\frac{d}{d\theta}sec\theta=sec\theta tan\theta d\theta
dθdsecθ=secθtanθdθ
还要注意下
s
e
c
θ
sec\theta
secθ的积分推导
∫
s
e
c
θ
d
θ
=
l
n
∣
s
e
c
θ
+
t
a
n
θ
∣
+
C
\int sec\theta d\theta=ln|sec\theta+tan\theta|+C
∫secθdθ=ln∣secθ+tanθ∣+C
推导过程比较简单,会的可以直接跳过。构造函数
u
=
s
e
c
θ
+
t
a
n
θ
u=sec\theta+tan\theta
u=secθ+tanθ,可以得到
d
u
=
s
e
c
θ
(
s
e
c
θ
+
t
a
n
θ
)
d
θ
=
u
s
e
c
θ
d
θ
du=sec\theta(sec\theta+tan\theta)d\theta=usec\theta d\theta
du=secθ(secθ+tanθ)dθ=usecθdθ
d
u
u
=
s
e
c
θ
d
θ
\frac{du}{u}=sec\theta d\theta
udu=secθdθ
∫
s
e
c
θ
d
θ
=
∫
d
u
u
=
l
n
∣
u
∣
+
C
=
l
n
∣
s
e
c
θ
+
t
a
n
θ
∣
+
C
\int sec\theta d\theta=\int \frac{du}{u}=ln|u|+C=ln|sec\theta+tan\theta|+C
∫secθdθ=∫udu=ln∣u∣+C=ln∣secθ+tanθ∣+C
常用换元类型
三种类型及二次换元
被积函数包含 | 替换方法 | 得到的结果 |
---|---|---|
a 2 − x 2 \sqrt{a^2-x^2} a2−x2 | x = a c o s θ x=acos\theta x=acosθ 或者 x = a s i n θ x=asin\theta x=asinθ | a s i n θ asin\theta asinθ或者 a c o s θ acos\theta acosθ |
a 2 + x 2 \sqrt{a^2+x^2} a2+x2 | x = a t a n θ x=atan\theta x=atanθ | a s e c θ asec\theta asecθ |
x 2 − a 2 \sqrt{x^2-a^2} x2−a2 | x = a s e c θ x=asec\theta x=asecθ | a t a n θ atan\theta atanθ |
在第一次换元之后,我们还需要把得到的式子还原回以
x
x
x 为变量的函数(也就是二次换元),这时就需要构造一个特殊的直角三角形,用以下的例子来说明:
求解
t
a
n
(
s
i
n
−
1
x
)
tan(sin^{-1}x)
tan(sin−1x) 的值:
令
θ
=
s
i
n
−
1
x
\theta=sin^{-1}x
θ=sin−1x,即
s
i
n
θ
=
x
sin\theta=x
sinθ=x,画出符合要求的直角三角形:
可以看出
t
a
n
(
s
i
n
−
1
x
)
=
t
a
n
θ
=
x
1
−
x
2
tan(sin^{-1}x)=tan\theta=\frac{x}{\sqrt{1-x^2}}
tan(sin−1x)=tanθ=1−x2x
其他具体的积分运算请参考之后的相关例题。
非纯平方项的情况
除了上述三种情况之外,有时候根号下会出现一次项,比如 x 2 + 4 x \sqrt{x^2+4x} x2+4x,遇到这类情况时的思路是配方(completing the square),即 x 2 + 4 x = ( x + 2 ) 2 − 4 \sqrt{x^2+4x}=\sqrt{(x+2)^2-4} x2+4x=(x+2)2−4,其中 a = 2 a=2 a=2,再令 u = x + 2 = 2 s e c θ u=x+2=2sec\theta u=x+2=2secθ即可。
相关例题
求不定积分:
∫
x
x
2
−
9
d
x
\int x\sqrt{x^2-9}dx
∫xx2−9dx
第一次换元:令
x
=
3
s
e
c
θ
x=3sec\theta
x=3secθ,
d
x
=
3
s
e
c
θ
t
a
n
θ
d
θ
dx=3sec\theta tan\theta d\theta
dx=3secθtanθdθ,
x
2
−
9
=
3
t
a
n
θ
\sqrt{x^2-9}=3tan\theta
x2−9=3tanθ,原式即可整理为:
∫
x
x
2
−
9
d
x
=
∫
27
t
a
n
2
θ
s
e
c
2
θ
d
θ
\int x\sqrt{x^2-9}dx=\int27tan^2\theta sec^2\theta d\theta
∫xx2−9dx=∫27tan2θsec2θdθ
令
u
=
t
a
n
θ
u=tan\theta
u=tanθ,
d
u
=
s
e
c
2
θ
du=sec^2\theta
du=sec2θ
∫
27
t
a
n
2
θ
s
e
c
2
θ
d
θ
=
27
∫
u
2
d
u
=
9
u
3
+
C
=
9
t
a
n
3
θ
+
C
\int27tan^2\theta sec^2\theta d\theta=27\int u^2du=9u^3+C=9tan^3\theta+C
∫27tan2θsec2θdθ=27∫u2du=9u3+C=9tan3θ+C
第二次换元(还原自变量):
先构造符合要求
s
e
c
θ
=
x
/
3
sec\theta=x/3
secθ=x/3的三角形:
从图中可以看出:
t
a
n
θ
=
x
2
−
9
3
tan\theta=\frac{\sqrt{x^2-9}}{3}
tanθ=3x2−9
最后带入到原式可以得到:
∫ x x 2 − 9 d x = 9 t a n 3 θ + C = 1 3 ( x 2 − 9 ) 2 / 3 + C \int x\sqrt{x^2-9}dx=9tan^3\theta+C=\frac{1}{3}(x^2-9)^{2/3}+C ∫xx2−9dx=9tan3θ+C=31(x2−9)2/3+C
(注意!在求定积分的时候一定要注意积分上下限的替换!!!!)
特殊情况——反三角函数的积分和导数
反三角函数的求导也涉及了构造三角形法,比如求 d d x t a n − 1 x \frac{d}{dx}tan^{-1}x dxdtan−1x和 d d x s i n − 1 x \frac{d}{dx}sin^{-1}x dxdsin−1x。
由已知条件:
y
=
t
a
n
−
1
x
y=tan^{-1}x
y=tan−1x,即
x
=
t
a
n
y
x=tany
x=tany。两边同时对
x
x
x求导并运用链式法则可以得到:
d
(
t
a
n
y
)
d
y
⋅
d
y
d
x
=
1
\frac{d(tany)}{dy}\cdot \frac{dy}{dx}=1
dyd(tany)⋅dxdy=1
d
y
d
x
=
1
s
e
c
2
y
=
c
o
s
2
y
\frac{dy}{dx}=\frac{1}{sec^2y}=cos^2y
dxdy=sec2y1=cos2y通过构造三角形,可以发现:
d
(
t
a
n
−
1
x
)
d
x
=
1
1
+
x
2
\frac{d(tan^{-1}x)}{dx}=\frac{1}{1+x^2}
dxd(tan−1x)=1+x21
同理可以得到:
d
(
s
i
n
−
1
x
)
d
x
=
s
e
c
(
s
i
n
−
1
x
)
=
1
1
−
x
2
\frac{d(sin^{-1}x)}{dx}=sec(sin^{-1}x)=\frac{1}{\sqrt{1-x^2}}
dxd(sin−1x)=sec(sin−1x)=1−x21
对应的积分表达式为:
∫
1
1
−
x
2
d
x
=
s
i
n
−
1
x
+
C
\int \frac{1}{\sqrt{1-x^2}}dx=sin^{-1}x+C
∫1−x21dx=sin−1x+C
∫
1
1
+
x
2
d
x
=
t
a
n
−
1
x
+
C
\int \frac{1}{1+x^2}dx=tan^{-1}x+C
∫1+x21dx=tan−1x+C