单变量微积分——导数和微分

本文内容对应我的博客中微积分笔记总目录下的第一章,导数和微分。

1. 导数和微分(Derivative and Differential)

1.1 导数的定义

几何直观解释:
在这里插入图片描述
图中的绿色虚线代表了函数 f ( x ) f(x) f(x) 的一条割线(secant line),即经过函数图像任意两个不重复的点的直线。直观的解释就是当这两个点( P P P Q Q Q)无限接近的时候,这条割线就和曲线 f ( x ) f(x) f(x) 只有一个交点,即在点 P P P 的切线,也被称为点 P P P 的导数。

代数定义
函数 f ( x ) f(x) f(x) 在点 x = x 0 x=x_0 x=x0 的导数被定义为:
f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x 0 ) − f ( x 0 ) Δ x f'(x_0)=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x_0)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxf(x0+Δx0)f(x0)
简而言之,导数本质上就是变化率的极限,或者是无穷小的区间内的变化率,也就是瞬时变化率。式子 f ( x 0 + Δ x 0 ) − f ( x 0 ) Δ x \frac{f(x_0+\Delta x_0)-f(x_0)}{\Delta x} Δxf(x0+Δx0)f(x0) 是等价于上图中P,Q两点连线的斜率的。

导数的相关符号(Notations)
导数的相关符号有很多,主要还是牛顿记法和莱布尼茨记法的区别(遇到复杂的问题更多两种记法的结合,但是莱布尼茨这种记法确实间接地促进了微积分的发展)

1. 牛顿记法:Newton’s Notations
Δ x → 0 \Delta x\to 0 Δx0
Δ y Δ x → f ′ ( x ) \frac{\Delta y}{\Delta x}\quad \to \quad f'(x) ΔxΔyf(x)
2. 莱布尼茨记法:Leibniz’s Notations
Δ x → 0 \Delta x\to 0 Δx0
Δ y Δ x → d y d x o r d f ( x ) d x o r d d x f ( x ) \frac{\Delta y}{\Delta x}\quad \to \quad \frac{dy}{dx}\quad or\quad \frac{df(x)}{dx}\quad or\quad \frac{d}{dx}f(x) ΔxΔydxdyordxdf(x)ordxdf(x)

1.2 求导(Differentiation)

在求导之前,我们先要看看原函数是什么类型的,如果是显式函数(都能写成 y = f ( x ) y=f(x) y=f(x) 的类型),我们可以直接记住某些函数的求导结果,或是用求导法则亦或是定义来求导,但是遇到隐式函数(可以写成 f ( x ) + g ( y ) = C f(x)+g(y)=C f(x)+g(y)=C C C C 为常数)的时候,我们只能通过一些技巧tricks来求解。

1.2.1 显式函数求导(Explicit Function)

显示函数求导法则总结:

  1. 一些常见函数的导数公式
    P o w e r   R u l e :   d d x x n = n x n − 1 Power\ Rule:\ \frac{d}{dx}x^n=nx^{n-1} Power Rule: dxdxn=nxn1 d d x sin ⁡ x = cos ⁡ x \frac{d}{dx}\sin x=\cos x dxdsinx=cosx d d x cos ⁡ x = − sin ⁡ x \frac{d}{dx}\cos x=-\sin x dxdcosx=sinx d d x e x = e x \frac{d}{dx}e^x=e^x dxdex=ex d d x e x = e x \frac{d}{dx}e^x=e^x dxdex=ex
  2. 通用的求导法则
    u ,   v u,\ v u, v 为两个函数,它们对应的导数为 u ′ ,   v ′ u',\ v' u, v
    两函数和的导数:
    ( u + v ) ′ = u ′ + v ′ (u+v)'=u'+v' (u+v)=u+v
    两函数乘积的导数:
    ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv
    两函数商的导数:
    ( u v ) ′ = u ′ v − u v ′ v 2 \Big(\frac{u}{v}\Big)'=\frac{u'v-uv'}{v^2} (vu)=v2uvuv
    (使用除法法则的时候,尽可能将原函数看成 u ⋅ ( 1 / v ) u\cdot(1/v) u(1/v)的乘积,这样会方便运算)

链式法则:(Chain Rule)——复合函数
如果函数只能写成 f ( g ( x ) ) f(g(x)) f(g(x)) 的形式,那么以上方法也许行不通了。这时候我们就要用链式法则:
lim ⁡ Δ t → 0 Δ y Δ t = d y d t = d y d x ⋅ d x d t \lim_{\Delta t\to0}\frac{\Delta y}{\Delta t}=\frac{dy}{dt}=\frac{dy}{dx}\cdot\frac{dx}{dt} Δt0limΔtΔy=dtdy=dxdydtdx
链式法则的基本思路就是换元了,把一个复杂的函数进行拆解

举个例子,求解函数 y = sin ⁡ 10 t y=\sin^{10}t y=sin10t 的导数。
第一步,令 x = sin ⁡ t x=\sin t x=sint,则 y = x 10 y=x^{10} y=x10
第二步,用链式法则分步求解导数:
d d t sin ⁡ 10 t = d d x x 10 ⋅ d d t sin ⁡ t = 10 sin ⁡ 9 t cos ⁡ t \frac{d}{dt}\sin^{10}t=\frac{d}{dx}x^{10}\cdot\frac{d}{dt}\sin t=10\sin^9t\cos t dtdsin10t=dxdx10dtdsint=10sin9tcost

需要注意的是,如果以上方法都求不出来导数,那么只能用定义来求解了。在这一过程中,求极限是关键,下文也会讲解如何处理特殊的极限。

1.2.2 隐式函数求导(Implicit Function)

步骤:

  1. 方程两边同时取 x x x 的导数,
    f ( x ) + g ( y ) = C f(x)+g(y)=C f(x)+g(y)=C
    在这一过程中将含有 g ( y ) g(y) g(y)的一项通过链式法则写成以下形式: d d y g ( y ) ⋅ d y d x \frac{d}{dy}g(y)\cdot\frac{dy}{dx} dydg(y)dxdy最后可以得到:
    d d x f ( x ) + d d y g ( y ) ⋅ d y d x = 0 \frac{d}{dx}f(x)+\frac{d}{dy}g(y)\cdot\frac{dy}{dx}=0 dxdf(x)+dydg(y)dxdy=0
  2. 提出 d y / d x dy/dx dy/dx,将 f ( x ) ,   g ( x ) f(x),\ g(x) f(x), g(x)的导数记作 f ′ ( x ) ,   g ′ ( x ) f'(x),\ g'(x) f(x), g(x),可以得到:
    d y d x = − f ′ ( x ) g ′ ( y ) \frac{dy}{dx}=-\frac{f'(x)}{g'(y)} dxdy=g(y)f(x)
    举例——反函数的求导
    求反正弦函数 y = sin ⁡ − 1 ( x ) y=\sin^{-1}(x) y=sin1(x) 的导数:
    首先,将原函数重新写成隐式函数形式,即 sin ⁡ y = x \sin y=x siny=x 的形式;之后,按上文的步骤两边同时对 x x x 求导,可以得到:
    cos ⁡ y ⋅ d y d x = 1 \cos y\cdot\frac{dy}{dx}=1 cosydxdy=1 d d x sin ⁡ − 1 x = 1 cos ⁡ y = 1 1 − sin ⁡ 2 ( y ) = 1 1 − x 2 \frac{d}{dx}\sin^{-1}x=\frac{1}{\cos y}=\frac{1}{\sqrt{1-\sin^2(y)}}=\frac{1}{\sqrt{1-x^2}} dxdsin1x=cosy1=1sin2(y) 1=1x2 1
    其他反函数的导数的求法与本例子相似。

1.2.3 无穷小量(Infinitesimal)和微分

定义
从上文导数的定义式和相关记法中可以看出:
d y d x = f ′ ( x ) \frac{dy}{dx}=f'(x) dxdy=f(x)
这里如果我们把 d y ,   d x dy,\ dx dy, dx 视为单独的变量(和 Δ y ,   Δ x \Delta y,\ \Delta x Δy, Δx相对应),即无穷小量
通过移项,我们可以得到,
d y = f ′ ( x ) d x dy=f'(x)dx dy=f(x)dx
这就是函数 y = f ( x ) y=f(x) y=f(x) 的微分形式了。简而言之,无穷小量的商就是函数 f ( x ) f(x) f(x) 的导数。

1.2.4 补充:求不定型极限的方法——洛必达法则( L ′ H o ^ s p i t a l ′ s   R u l e L'H\hat ospital's\ Rule LHo^spitals Rule

导数的根本还是极限,一般情况下,极限非常好求,只需要带入极限端点的值到原函数即可。但遇到不定型(Indeterminate Form)的情况( 0 / 0 ,   ± ∞ / ± ∞ ,   0 ⋅ ± ∞ 0/0,\ \pm\infty/\pm\infty ,\ 0\cdot\pm\infty 0/0, ±/±, 0± 等等)时并不能直接用代入法求解。洛必达法则可以解决这类问题。
a. 洛必达法则第一类情况的定义:
假设求解的极限是:
lim ⁡ x → a f ( x ) g ( x ) \lim_{x\to a}\frac{f(x)}{g(x)} xalimg(x)f(x)并且 f ( a ) = g ( a ) = 0 f(a)=g(a)=0 f(a)=g(a)=0 0 / 0 0/0 0/0的形式)
洛必达法则规定:
lim ⁡ x → a f ( x ) g ( x ) = f ′ ( a ) g ′ ( a ) \lim_{x\to a}\frac{f(x)}{g(x)}=\frac{f'(a)}{g'(a)} xalimg(x)f(x)=g(a)f(a)

第一类情况的简单证明
lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ( x ) x − a g ( x ) x − a = lim ⁡ x → a f ( x ) − f ( a ) x − a g ( x ) − g ( a ) x − a = lim ⁡ x → a f ( x ) − f ( a ) x − a lim ⁡ x → a g ( x ) − g ( a ) x − a = f ′ ( a ) g ′ ( a ) \lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{\frac{f(x)}{x-a}}{\frac{g(x)}{x-a}}=\lim_{x\to a}\frac{\frac{f(x)-f(a)}{x-a}}{\frac{g(x)-g(a)}{x-a}}=\frac{\lim_{x\to a}\frac{f(x)-f(a)}{x-a}}{\lim_{x\to a}\frac{g(x)-g(a)}{x-a}}=\frac{f'(a)}{g'(a)} xalimg(x)f(x)=xalimxag(x)xaf(x)=xalimxag(x)g(a)xaf(x)f(a)=limxaxag(x)g(a)limxaxaf(x)f(a)=g(a)f(a)

b. 第二类情况的定义
洛必达法则在以下条件下也是成立的:

  • a = ± ∞ a=\pm\infty a=±
  • f ( a ) ,   g ( a ) = ± ∞ f(a),\ g(a)=\pm\infty f(a), g(a)=±
  • lim ⁡ x → a f ′ ( a ) g ′ ( a ) = ± ∞ \lim_{x\to a}\frac{f'(a)}{g'(a)}=\pm\infty limxag(a)f(a)=±

洛必达法则不仅可以处理 0 / 0 0/0 0/0形式,也可以处理 ∞ / ∞ \infty/\infty / 的形式。但是要注意的是洛必达法则不能应用在 f ′ ( a ) g ′ ( a ) \frac{f'(a)}{g'(a)} g(a)f(a)震荡剧烈的情况。

提示hints:如果遇到形如 0 ⋅ ± ∞ 0\cdot\pm\infty 0±的情况,可以将其转化为 0 / 0 0/0 0/0 ∞ / ∞ \infty/\infty /的情况, 0 = 1 ∞ ,   ∞ = 1 0 0=\frac{1}{\infty},\ \infty=\frac{1}{0} 0=1, =01

1.2.5 函数的连续性(Continuity)和其导数的关系

函数连续性定义:
如果 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\to x_0}f(x)=f(x_0) limxx0f(x)=f(x0),那么函数 f ( x ) f(x) f(x) 在点 x = x 0 x=x_0 x=x0处是连续的。
左连续和右连续
函数的连续性说明了:
首先 f ( x ) f(x) f(x) 在点 x = x 0 x=x_0 x=x0 处有定义,也就是 f ( x 0 ) f(x_0) f(x0) 存在。
其次,函数的左右极限是相等的(所谓的左极限就是从函数左侧朝点 x = x 0 x=x_0 x=x0看去,右极限同理)。即,
lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim_{x\to x_0^-}f(x)=\lim_{x\to x_0^+}f(x)=f(x_0) xx0limf(x)=xx0+limf(x)=f(x0)

不连续的情况

  1. Jump Discontinuities(在某一点,函数值突然发生变化)
  2. Removable Discontinuities(函数的某一点没有定义)
  3. Infinite Discontinuities(函数的左极限和右极限为无穷大)
  4. Other Discontinuities(函数某一点的极限没有定义)

定理——“可微必连续”
内容:如果函数 f ( x ) f(x) f(x) 在点 x = x 0 x=x_0 x=x0 处是可导的,那么函数 f ( x ) f(x) f(x) x 0 x_0 x0 处连续。

简单证明
已知条件是:
lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} Δx0limΔxf(x0+Δx)f(x0)是存在的。

如果令 Δ x = x − x 0 \Delta x=x-x_0 Δx=xx0(简单换元),则上面的式子等价于
lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} xx0limxx0f(x)f(x0)

我们要证明的是: lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\to x_0}f(x)=f(x_0) limxx0f(x)=f(x0) (函数连续性的定义式),通过移项也就是:
lim ⁡ x → x 0 [ f ( x ) − f ( x 0 ) ] = 0 \lim_{x\to x_0}[f(x)-f(x_0)]=0 xx0lim[f(x)f(x0)]=0
等价于,
lim ⁡ x → x 0 [ f ( x ) − f ( x 0 ) x − x 0 ] ⋅ ( x − x 0 ) \lim_{x\to x_0}[\frac{f(x)-f(x_0)}{x-x_0}]\cdot(x-x_0) xx0lim[xx0f(x)f(x0)](xx0) = f ′ ( x 0 ) ⋅ lim ⁡ x → x 0 ( x − x 0 ) = f ′ ( x 0 ) ⋅ 0 = 0 =f'(x_0)\cdot\lim_{x\to x_0}(x-x_0)=f'(x_0)\cdot0=0 =f(x0)xx0lim(xx0)=f(x0)0=0
这也就证明了 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\to x_0}f(x)=f(x_0) limxx0f(x)=f(x0)是成立的。

参考

MIT 18.01单变量微积分讲义: https://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/unit-5-exploring-the-infinite/part-b-taylor-series/

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值