MIT 18.01 单变量微积分笔记——总目录及对应链接

0. 写在前面

这篇总目录主要参考了MIT 18.01单变量微积分的课程结构,当然我也做了一些我认为更合理的思路上的改动。给自己定个小目标,争取一周之内填补目录上的几乎所有内容,我每写完一篇就会在本目录中的大标题加一个超链接(现在已有三条链接),有兴趣看的伙伴直接打开这个目录进入想看的章节即可。

1. 导数和微分(Derivative and Differential)

(此链接包含了第一章的所有内容,不再重复添加链接。)

1.1 导数的定义

1.2 求导(Differentiation)

1.2.1 显式函数求导(Explicit Function)

1.2.2 隐式函数求导(Implicit Function)

1.2.3 无穷小量(Infinitesimal)和微分

1.2.4 补充:求不定型极限的方法——洛必达法则( L ′ H o ^ s p i t a l ′ s   R u l e L'H\hat ospital's\ Rule LHo^spitals Rule

1.2.5 函数的连续性(Continuity)和其导数的关系

2. 导数和微分的应用(Applications)

(此链接包含了第二章的所有内容,不再重复添加链接。)

2.1 线性和二次近似(Linear and Quadratic Approximation)

2.2 画草图(Curve Sketching)

2.3 牛顿法求根(Newton’s Method)

2.4 中值定理(Mean Value Theorem)

3. 积分(Integral)——微分的逆运算

(此链接包含了第三章的所有内容,不再重复添加链接。)

3.1 反导数(Antiderivative)和定积分(Definite Integral)

3.2 微积分基本定理(The Fundamental Theorem of Calculus)

3.3 积分的性质

3.4 积分技巧: (Techniques of Integration)

3.4.1 换元法(Substitution and Trig Substitution)

3.4.2 分部积分(Integrations by Parts)

3.4.3 部分分式(Partial Fractions)

3.5 瑕积分(improper integral)

3.6 数值积分(Numerical Integration)

4. 积分的应用

(此链接包含了第四章的所有内容,不再重复添加链接。)

4.1 平均值和加权平均值(Averages and Weighted Averages)

4.2 求两条曲线包围下的面积

4.3 求二维曲线轨迹长度(Arc Length)、三维曲面面积和体积(Surface and Volume)

4.3.1 坐标系和参数方程(Coordinates and Parametric Equations)

4.3.2 曲线轨迹对应的微分形式

4.3.3 壳层法和圆盘法(Methods of Shells and Disks)——应对旋转类几何问题

4.4 求概率(Bell Curve)

4.5 微分方程简介(Differential Equations)

5. 无穷级数(Infinite Series)——从另一个角度看函数

(此链接包含了第五章的所有内容,不再重复添加链接。)

2019.06.02我终于完成了单变量微积分的所有笔记,不仅复习了课程也熟悉了LaTex编辑公式!接下来就是多变量微积分了,再接再厉!!!

参考

MIT 18.01单变量微积分讲义: https://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/unit-5-exploring-the-infinite/part-b-taylor-series/

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值