论文笔记010:[CVPR2019]VERI-Wild: A Large Dataset and a New Method for Vehicle Re-Identification in the W

这篇论文介绍了VERI-Wild,一个针对车辆重识别的大型无约束数据集,包含174个摄像头的1个月连续拍摄的40多万张图片。文中提出了一种新的特征距离对抗网络(FDANet)算法,通过在线生成硬负样本提高识别效果。实验显示,该数据集比现有数据集更具挑战性,且新算法在多个数据集上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

摘要

车辆重识别(ReID)对智能交通和公共安全具有重要意义。然而,在现实场景中,许多具有挑战性的问题尚未得到充分的研究,如高视点变化、极端光照条件、复杂的背景和不同的相机源。 引 出 问 题 \color{red}引出问题

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值