
摘要
由于不同摄像机之间存在显著的类内差异,车辆重新识别(re-id)仍然具有挑战性。由于不同摄像机之间存在显著的类内差异。
在本文中,我们提出了我们对2019年AICity车辆重新识别挑战的解决方案。有限的训练数据促使我们利用网络上的免费数据并部署了两阶段的学习策略。
大规模数据集的成功,即ImageNet,激发了我们建立一个大规模的车辆数据集,称为VehicleNet,基于公共网络数据。
我们将所提供的训练集与其他公共车辆数据集,即VeRi-776、CompCar和VehicleID结合起来作为VehicleNet。数据集
在第一阶段,训练集被放大了16倍,从26,803张到434,453张图片。尽管不同的数据集之间存在偏差,例如光照和场景,VehicleNet通常提供车辆的共同知识,有利于深度学习的
模型在学习不同视角下的不变表示时受益。第一步是扩大训练集
在第二阶段,我们进一步微调了训练后的模型只在原始训练集上进行微调。第二阶段的目的是缩小VehicleNet和原始训练集之间的差距。原始训练集之间的差距。第二阶段在原始数据集上微调
尽管很简单,我们在私人测试集上实现了mAP75.60%,而没有额外的信息。例如,测试数据的时间或空间注释。
方法
1.CityFlow作为主要的数据集,然后加三个额外的数据集VeRi-776,CompCar和VehicleID

本文介绍了一种解决车辆重识别问题的方法,通过建立VehicleNet数据集并采用两阶段学习策略。首先,将多个车辆数据集结合放大训练集,然后微调模型以减小数据集间偏差。在不使用额外信息的情况下,该方法在测试集上实现了高精度。
最低0.47元/天 解锁文章
2624

被折叠的 条评论
为什么被折叠?



