一、✨ 引言
随着三维重建技术的飞速发展,NeRF(Neural Radiance Fields)与 3D Gaussian Splatting(3DGS)等方法成为重建真实场景和物体几何细节的前沿方案。这些方法在大规模场景建模、机器人感知、文物数字化、工业检测等场景中展现出强大潜力。
然而,重建质量的上限不仅取决于算法本身,还深受数据质量的影响。尤其是在没有现成数据集的实际应用中,如何自行拍摄高质量图片与视频,成为实现精细重建的关键步骤。
本文将详细介绍:如何为3DGS、NeRF等方法采集高质量训练数据,从设备选择、轨迹设计、拍摄技巧到后处理流程,附图详解,助你构建稳定可靠的三维重建数据集。
二、 📸 设备与参数选择
参数 | 推荐设置 |
---|---|
相机设备 | 手机(旗舰机型)、运动相机、大疆口袋云台 |
分辨率 | 4K(3840×2160)优选,最低 1080p |
帧率 | 30fps 或 60fps |
防抖功能 | 关闭电子防抖,避免帧间几何失真 |
曝光与对焦 | 手动锁定(固定光照更佳) |
拍摄格式 | MP4、MOV 等主流格式 |
三、🧭 相机运动轨迹设计
数据质量的核心来自 多角度且平滑的视差变化,合理轨迹设计可以显著提升3D重建的一致性和精度。
1. 圆形环绕(Circular Orbit)
- 路径:以目标为中心环绕一圈,始终面向目标。
- 用途:适合建模整体轮廓,确保每个侧面都被捕捉。
- 建议:拍摄时保持距离1.5~3米,高度保持不变。
2. “8”字形轨迹(Figure-Eight)
- 路径:模拟数字“8”,中间交叉点对准目标中心。
- 用途:增强视角多样性,闭环特性利于深度建模。
- 建议:行走更缓,辅助捕捉死角与细节。
📷 图示
上图展示了推荐轨迹在实际飞机场景中的应用:相机以圆形轨迹与8字轨迹交替穿插,从多个角度拍摄目标。
本图展示了围绕飞机模型推荐的两种关键拍摄轨迹:
① 圆形环绕(Circular Orbit)
-
轨迹说明:摄像头围绕目标(如飞机)沿圆形轨道移动,始终面向目标中心。
-
作用:
捕捉对象外形整体轮廓; 提供连续的多角度视差; 有助于COLMAP/3DGS等系统重建边缘曲面。
-
操作建议:
半径保持在目标周围 1.5 ~ 3 米; 相机高度与目标中心持平,或轻微俯视; 行走速度缓慢匀速,建议控制在 0.3~0.5m/s; 建议拍摄时长:15~20 秒。
② “8”字轨迹(Figure-Eight)
-
轨迹说明:在目标周围走出“8”字形轨迹,同时保持摄像机始终朝向目标。
-
作用:
在多个方向捕捉目标特征,避免“死角”; 增强不同方向的视角覆盖,提升深度估计闭环一致性; 补充圆形环绕中无法准确重建的区域(如细节、内侧结构)。
-
操作建议:
步伐更缓,保持中心交叉点在目标正前; 相机可适当上下移动,模拟不同拍摄高度; 建议拍摄时长:20~30 秒。
总体拍摄建议(配合图示)
要点 | 建议设置 |
---|---|
距离目标 | 1.5~3 米,确保相机不会太近失焦 |
运动速度 | 0.3~0.5 米/秒,慢速匀速最佳 |
持机方式 | 手持稳定器或两手握紧保持稳定 |
曝光/焦点 | 全程锁定,避免曝光跳动 |
视频参数 | 4K 分辨率、30fps、关闭防抖 |
总帧数 | 提帧数量建议:300~1000 张之间 |
注意光照 | 自然光均匀、无强烈阴影或反光 |
补充说明(用于提升训练效果)
-
可在“圆形+8字”之后增加垂直视角变换:
抬高镜头从上方拍摄(模拟俯视); 蹲下拍摄(模拟仰视);
-
如果目标是大型物体(如整架飞机),建议分段拍摄:
机头、机身、机翼、机尾分别拍摄并拼接训练;
-
避免以下问题:
强光导致曝光失败; 相机剧烈抖动; 快速旋转/移动;
四、🎞 拍摄技巧与注意事项
项目 | 拍摄建议 |
---|---|
相机距离 | 建议 1.5~3 米,避免过近产生畸变 |
移动速度 | 匀速 0.3~0.5 m/s,确保视差连续性 |
拍摄时长 | 每条轨迹约 20~30 秒 |
环境光照 | 均匀柔和,自然光最佳,避免阴影/反光 |
特征丰富性 | 地面、背景、目标应有足够纹理(非纯色墙面) |
动态物体 | 尽量避免行人、车辆等移动干扰 |
五、🧪 数据后处理流程
- 从视频中提帧(使用 ffmpeg):
ffmpeg -i input.mp4 -vf "fps=10" frames/frame_%04d.jpg
-
检查与清洗帧:剔除模糊、曝光失败图像。
-
COLMAP 相机参数恢复:
colmap feature_extractor \
--database_path database.db \
--image_path frames \
--ImageReader.single_camera 1
colmap exhaustive_matcher \
--database_path database.db
mkdir sparse && colmap mapper \
--database_path database.db \
--image_path frames \
--output_path sparse
colmap model_converter \
--input_path sparse/0 \
--output_path sparse/0 \
--output_type TXT
- 3DGS 数据准备与训练示例:
# 安装工具链、准备 transforms.json(使用 convert_colmap.py)
python convert_colmap.py --input sparse/0 --output transforms.json
# 开始训练(以 3D Gaussian Splatting 为例)
python train.py --config configs/gaussian.yaml --data transforms.json
六、✅ 提升质量的额外建议
- 加入上下仰拍、顶视等俯仰角度拍摄:补充顶部/底部信息
- 拍摄顺序分段:大场景可拆解为多部分各自建模后拼接
- 使用三轴稳定器提升视频稳定性
- 若使用手机,可锁定 ISO、快门、焦点后再拍摄
七、📦 总结
优质的数据是高质量三维重建的前提。3DGS 与 NeRF 对相机轨迹与图像一致性要求极高,而合理的拍摄策略能显著减少训练误差、提升建模精度。
通过科学规划拍摄路径、控制移动节奏、保障光照环境,再结合自动化的后处理工具链,即使是普通手机也能采集出媲美专业设备的数据。
本文不仅提供了完整的图文指南,帮助你构建高质量、自主可控、易于训练的三维重建数据集,还补充了一键提帧、标注转换与训练指令,覆盖从采集到建模的每一步流程。如果对你有帮助可以一键三连,有问题的小伙伴也欢迎评论区进一步交流!!