Yolov5 冻结网络层进行迁移学习

本文介绍了如何在YOLOv5中利用冻结图层进行迁移学习,通过设置梯度为零来冻结指定层,减少资源消耗,加快训练速度。虽然这可能导致最终模型的精度略有下降,但提供了在有限资源下训练的有效途径。实验对比了不同冻结策略对模型精度和GPU利用率的影响。
摘要由CSDN通过智能技术生成

使用冻结图层进行迁移学习

本文介绍如何在迁移学习时冻结 YOLOv5 🚀 层。迁移学习是一种有用的方法,可以在新数据上快速重新训练模型,而无需重新训练整个网络。相反,部分初始权重被冻结在适当的位置,其余的权重用于计算损失并由优化程序更新。与正常训练相比,这需要更少的资源,并允许更快的训练时间,尽管它也可能导致最终训练的准确性降低

开始之前

克隆此存储库并安装要求.txt依赖项,包括 Python>=3.8 和 PyTorch>=1.7。

$ git clone https://github.com/ultralytics/yolov5 # clone repo
$ cd yolov5
$ pip install wandb -qr requirements.txt # install requirements.txt

冻结骨干网

在训练开始之前,通过将其梯度设置为零,将与 train.py 中的列表匹配的所有图层都将冻结。https://github.com/ultralytics/yolov5/blob/58f8ba771e3712b525ca93a1ee66bc2b2df2092f/train.py
#L83-L90freeze

查看模块名称列表:

for k, v in model.named_parameters():
    print(k)

# Output
model.0.conv.</
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值