为什么Diffusion Models扩散模型可以称为Score-based Models?

本文探讨了Diffusion Models(扩散模型)被称为Score-based Models的原因。通过解析正向和反向过程,以及训练目标的化简,阐述了模型如何通过匹配噪声的score来实现数据重建,从而避免了对抗训练带来的问题。这种从噪声重建数据的方法为模型优化提供了新的思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Diffusion Models专栏文章汇总

前言:

《Diffusion Model扩散模型与深度学习(附Python示例)》《击败GANs的新生成式模型:score-based model(diffusion model)原理、网络结构、应用、代码、实验、展望》

前面这两篇文章中详细讨论了diffusion models和score-based models原理、方法和代码实现。新的生成式模型从出生开始就被寄予打败GANs、VAE等前辈的重望。虽然这两种模型在本质上来讲是一样的,但是为什么diffusion models可以被称为score-based models呢?彻底弄懂这一问题对理解扩散模型大有帮助。


目录

正向过程和反向过程

反向过程:

正向过程:

参数解释:

训练目标

化简训练目标

从训练目标解释为什么又称为score-based models

从数据的

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值