每日AIGC最新进展(51):昆仑万维震撼发布16B DiT-MoE图像生成模型、东北大学提出使用去噪神经权重进行高效训练、美团提出视频扩散模型量化方法

Diffusion Models专栏文章汇总:入门与实战

Scaling Diffusion Transformers to 16 Billion Parameters

本文介绍了DiT-MoE,一种可扩展的稀疏变分Transformer模型,它在保持与密集网络竞争力的同时,实现了高度优化的推理。通过共享专家路由和专家级平衡损失设计,DiT-MoE捕获了共同知识并减少了不同路由专家之间的冗余。

DiT-MoE通过将DiT中的部分密集前馈层替换为稀疏MoE层,实现了条件计算。每个图像块的标记被路由到一组专家

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值