退耦半径学习及推导

貌似在学校的课本上并没有接触过电容的去耦半径概念。我们都知道小电容滤除高频,大电容滤低频,为了达到更好的滤波效果,一般输入电源或者输出电源都是采用一个大容值电容加一个小容值电容的方式,比如 1uF+0.1uF。

我们先来了解一下去耦和旁路的区别。旁路电容,叫 bypass,是把输入信号中的高频成分作为滤除对象。

去耦电容,叫 decoupling,也称退耦电容,是把输出信号的干扰作为滤除对象。可以看到,旁路电容和去耦电容的作用都是滤波,只是在电路上的位置不同而已。

在这里插入图片描述

旁路电容和去耦电容区别

旁路一般位于信号输入端,去耦一般位于信号输出端。旁路电容滤除的是前级电源的干扰,一般是高频噪声,在输入电源管脚上加小容值电容,比如常见的 0.1uF。

在这里插入图片描述

去耦电容是滤除的是输出级的干扰,因为输出级是作为了下一级的输入。去耦电容的第一个作用和旁路是一样的,高频滤波。第二是充当储能电容,在负载所需电流突然增大时提供电能,满足驱动电路的电流变化,电容越大,储能越多,在一定范围内,满足负载电流变化更有效。说完了去耦和旁路,来到正题,电容的去耦半径。先记一下理论:小容值电容去耦路径短,超过去耦路径,就失去了去耦效果,所以一般靠近 IC 摆放。大容值电容去耦路径长,摆放位置相对宽松一些。所以电源,一般是先经过大电容,再经过小电容,再进入到 IC 芯片。

我画了一个简图,来帮助理解大小电容的摆放位置,你会发现,A 和 C 处的两个电容都是小电容靠近 IC,但是 B 处是大电容靠近 IC,这是为什么呢?

在这里插入图片描述

电容摆放示意图首先,A 和 C 处两个电容都是旁路电容,B 处的两个电容是去耦电容(滤波加储能作用)。其次,芯片 A 是电源芯片,它的输出相对于 B 处的 1uF 电容来说,就是输入,所以先经过 1uF,再经过 0.1uF,也是没有问题的。

最后,B 处两个电容也作为储能电容,回路往往伴随较大的纹波电流,且会在电容的 ESR 上产生大量的热,同时形成纹波电压。所以靠近电源芯片的电容会流过更大的纹波电流,如果把小电容靠近电源芯片输出,容易出问题。所以对电源芯片总结就是:输入电源先大后小(小的靠近电源 IC),输出电源也是先大后小(大的靠近电源 IC)。

最后是去耦半径的推导流程:
在这里插入图片描述

<think>好的,用户想了解电容去半径的定义、作用及其原理。首先,我需要回顾已有的引用内容,特别是引用[1]、[3]、[4]、[5]中提到的相关内容。 根据引用[1],去半径是指电容摆放不能超过某个距离,否则会失效。原理方面,除了电感因素,还涉及电容的有效作用范围。这里需要明确去半径的具体定义,可能和电容的谐振频率或信号传播时间有关。 引用[3]提到电容靠近负载能减少传输线的影响,这可能与去半径相关,即距离越近,电感电阻影响越小。引用[4]讨论了电容的自谐振频率和等效电感,这可能影响其有效频率范围,进而影响去半径。引用[5]提到安装后的寄生电感会改变谐振频率,这可能影响去半径的计算。 接下来需要整合这些信息。定义部分,去半径是电容有效去的最大距离,超过后无法及时响应电流变化。作用方面,确保电容能快速补偿电流需求,维持电压稳定。原理可能涉及信号传播延迟和电容的响应时间,比如当电流需求变化时,电容需要在电荷波传播时间内到达负载,否则无法及时补充电荷。 可能还需要考虑电磁波传播速度,计算最大允许距离。例如,信号传播时间为Δt,对应距离为v*Δt,其中v是信号在PCB材料中的传播速度。公式推导可能涉及Δt=1/(πf),其中f是电容的自谐振频率,这样去半径d_max = v/(πf)。 需要检查引用中是否有相关公式或计算示例。引用[4]提到自谐振频率和ESL的关系,可以用来计算电容的有效频率。而引用[5]提到安装后的谐振频率变化,可能影响实际的有效半径。因此,在原理部分需要说明自谐振频率和安装后的实际频率差异对去半径的影响。 最后,总结去半径的关键点:定义、作用、原理(涉及传播延迟和自谐振频率),以及实际设计中的考虑因素,如减小安装电感、选择合适电容封装等。</think>### 电容去半径的定义、作用与原理 #### 1. **定义** **去半径**是指电容在电路中能够有效发挥去作用的最大物理距离。若电容与芯片的距离超出此范围,其去效果会显著下降甚至失效[^1]。这一概念与电容的响应速度、信号传播延迟以及电磁特性密切相关。 --- #### 2. **作用** 去半径的核心作用是确保电容能够**快速响应负载瞬态电流需求**,具体包括: - **维持电压稳定性**:在芯片电流突变时,电容需在极短时间内补充电荷,避免电压波动。 - **抑制高频噪声**:通过吸收高频电流变化,减少电源/地平面上的噪声传播。 - **优化能量传输效率**:缩短电流回路,降低回路电感($L_{\text{loop}}$)和电阻($R_{\text{loop}}$)的影响[^1][^3]。 --- #### 3. **原理** 去半径的理论基础涉及**信号传播延迟**与**电容响应频率**的匹配: ##### (1) **信号传播延迟限制** 电容对电流变化的响应需在电荷波传播时间内完成。假设信号在PCB中的传播速度为$v$(典型值为$1.5 \times 10^8 \, \text{m/s}$),电容自谐振频率为$f_{\text{SRF}}$,则去半径$d_{\text{max}}$可近似为: $$ d_{\text{max}} \approx \frac{v}{\pi f_{\text{SRF}}} $$ 例如,若某电容的$f_{\text{SRF}} = 100 \, \text{MHz}$,则$d_{\text{max}} \approx 0.48 \, \text{cm}$[^4][^5]。 ##### (2) **自谐振频率与安装参数** 电容的实际谐振频率由等效串联电感(ESL)和电容值(C)决定: $$ f_{\text{SRF}} = \frac{1}{2\pi \sqrt{\text{ESL} \cdot C}} $$ 安装引入的寄生电感(如过孔、走线)会降低实际$f_{\text{SRF}}$,从而缩小有效去半径[^4][^5]。 ##### (3) **储能与频率响应** 电容的储能能力$E = \frac{1}{2} C V^2$需覆盖负载的瞬态能量需求。高频去依赖小电容(低ESL),低频去依赖大电容(高C)。去半径要求小电容更靠近芯片,以覆盖高频噪声[^3][^4]。 --- #### 4. **设计实践** - **缩短安装电感**:采用小封装电容(如0402比0805 ESL更低)和优化布线[^4][^5]。 - **多电容并联**:通过不同容值电容组合覆盖宽频段,但需注意反谐振问题。 - **仿真验证**:通过电源完整性(PI)工具分析电容布局对阻抗的影响[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Filthyfrank

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值