爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
实现代码
因为一次只能爬一层或者两层。如果只有一层的话,那就只有一种方法,如果又两层的时候,可以一次上去或者分两次上去。如果有三层,那么可以最后一次胜两层或者剩一层。根据归纳法,假设有x层,方法有f(x)
种,那么在最后一步可以是一次上两层或者一次上一层。那么f(x)=f(x-1)+f(x-2)
。那么这显然就是斐波那契数列。
class Solution:
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
a,b=0,1
for i in range(n):
a,b=b,a+b
return b