时间序列预测 — ARIMA实现单输入单输出负荷预测

本文介绍了使用ARIMA和SARIMA模型进行时间序列预测,特别是针对负荷数据的预测。首先,文章阐述了时间序列预测存在的问题,如信息泄露和模型选择。接着详细介绍了数据准备、数据探索、差分处理、ACF和PACF图像绘制,以及ARIMA和SARIMA模型的构建过程。通过模型选择和检验,最终得出SARIMA模型在预测负荷数据上表现优于ARIMA。
摘要由CSDN通过智能技术生成

 专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html

专栏内容

 所有文章提供源代码、数据集、效果可视化

 文章多次上领域内容榜、每日必看榜单、全站综合热榜

时间序列预测存在的问题

 现有的大量方法没有真正的预测未来值,只是用历史数据做验证

 利用时间序列分解算法存在信息泄露的问题:有人用emd+lstm对时间序列进行预测,是否存在原理上的问题? - 知乎


目录

1 数据准备与可视化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

几度春风里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值