专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html
专栏内容
所有文章提供源代码、数据集、效果可视化
文章多次上领域内容榜、每日必看榜单、全站综合热榜
时间序列预测存在的问题
现有的大量方法没有真正的预测未来值,只是用历史数据做验证
利用时间序列分解算法存在信息泄露的问题:有人用emd+lstm对时间序列进行预测,是否存在原理上的问题? - 知乎
目录
本文介绍了使用ARIMA和SARIMA模型进行时间序列预测,特别是针对负荷数据的预测。首先,文章阐述了时间序列预测存在的问题,如信息泄露和模型选择。接着详细介绍了数据准备、数据探索、差分处理、ACF和PACF图像绘制,以及ARIMA和SARIMA模型的构建过程。通过模型选择和检验,最终得出SARIMA模型在预测负荷数据上表现优于ARIMA。
专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html
专栏内容
所有文章提供源代码、数据集、效果可视化
文章多次上领域内容榜、每日必看榜单、全站综合热榜
时间序列预测存在的问题
现有的大量方法没有真正的预测未来值,只是用历史数据做验证
利用时间序列分解算法存在信息泄露的问题:有人用emd+lstm对时间序列进行预测,是否存在原理上的问题? - 知乎
目录
4600

被折叠的 条评论
为什么被折叠?