Help Jimmy 【POJ 1661】

题目链接

“Help Jimmy” 是在下图所示的场景上完成的游戏。
场景中包括多个长度和高度各不相同的平台。地面是最低的平台,高度为零,长度无限。
Jimmy老鼠在时刻0从高于所有平台的某处开始下落,它的下落速度始终为1米/秒。当Jimmy落到某个平台上时,游戏者选择让它向左还是向右跑,它跑动的速度也是1米/秒。当Jimmy跑到平台的边缘时,开始继续下落。Jimmy每次下落的高度不能超过MAX米,不然就会摔死,游戏也会结束。
设计一个程序,计算Jimmy到底地面时可能的最早时间。

Input
第一行是测试数据的组数t(0 <= t <= 20)。每组测试数据的第一行是四个整数N,X,Y,MAX,用空格分隔。N是平台的数目(不包括地面),X和Y是Jimmy开始下落的位置的横竖坐标,MAX是一次下落的最大高度。接下来的N行每行描述一个平台,包括三个整数,X1[i],X2[i]和H[i]。H[i]表示平台的高度,X1[i]和X2[i]表示平台左右端点的横坐标。1 <= N <= 1000,-20000 <= X, X1[i], X2[i] <= 20000,0 < H[i] < Y <= 20000(i = 1…N)。所有坐标的单位都是米。
Jimmy的大小和平台的厚度均忽略不计。如果Jimmy恰好落在某个平台的边缘,被视为落在平台上。所有的平台均不重叠或相连。测试数据保证问题一定有解。

Output
对输入的每组测试数据,输出一个整数,Jimmy到底地面时可能的最早时间。

中文题意就不解释了

解题思路

首先排序是肯定的,按照高低从小到大排序,然后我们从最下面向上推,做这个题的时候只想着从上向下,但是状态又控制不好,从下向上比较方便。
我们定义dp[i][j](j有两个取值:1或者0):dp[i][0] 的意思是从地面到第i个板子在第i个板子是从左边掉下去的所用时间,dp[i][1] 的意思是从地面的到第i个板子在第i个板子是从右边掉下去的所用时间。
所以我们可以得出递推公式:
dp[i][0]=(e[i].h-e[k].h)+min(dp[k][0]+e[i].x1-e[k].x1,dp[k][1]+e[k].x2-e[i].x1);
dp[i][1]=(e[i].h-e[k].h)+min(dp[k][0]+e[i].x2-e[k].x1,dp[k][1]+e[k].x2-e[i].x2);
这里的k所代表的是从第i个板子掉下去的那个板子的编号
最后递推到初始位置的时候就可以了

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct node
{
    int x1,x2,h;
};
node e[30005];
int dp[40005][4];
int x,y,H,n,maxx;
int inf=0x3f3f3f3f;
int cmp(node a,node b)
{
    if(a.h==b.h)
        return a.x1<b.x1;
    return a.h<b.h;
}
void FL(int i)
{
    int k=i-1;
    while(k>0&&e[i].h-e[k].h<=maxx)
    {
        if(e[k].x1<=e[i].x1&&e[k].x2>=e[i].x1)
        {
            dp[i][0]=(e[i].h-e[k].h)+min(dp[k][0]+e[i].x1-e[k].x1,dp[k][1]+e[k].x2-e[i].x1);
            return ;
        }
        else
            k--;
    }
    if(e[i].h-e[k].h>maxx)
        dp[i][0]=inf;
    else
        dp[i][0]=e[i].h-e[k].h;
}
void FR(int i)
{
    int k=i-1;
    while(k>0&&e[i].h-e[k].h<=maxx)
    {
        if(e[k].x1<=e[i].x2&&e[k].x2>=e[i].x2)
        {
            dp[i][1]=(e[i].h-e[k].h)+min(dp[k][0]+e[i].x2-e[k].x1,dp[k][1]+e[k].x2-e[i].x2);
            return ;
        }
        else
            k--;
    }
    if(e[i].h-e[k].h>maxx)
        dp[i][1]=inf;
    else
        dp[i][1]=e[i].h-e[k].h;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d %d %d %d",&n,&x,&y,&maxx);
        for(int i=1; i<=n; i++)
            scanf("%d %d %d",&e[i].x1,&e[i].x2,&e[i].h);
        e[0].x1=-20000;
        e[0].x2=200000;
        e[0].h=0;
        e[n+1].x1=x;
        e[n+1].x2=x;
        e[n+1].h=y;
        sort(e,e+n+2,cmp);
        memset(dp,0,sizeof(dp));
        for(int i=1; i<=n+1; i++)
        {
            FL(i);
            FR(i);
        }
        printf("%d\n",min(dp[n+1][1],dp[n+1][0]));
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值