题目链接 POJ 3186
大概题意
给你一个双向队列,每次可以从队首,或者从队尾取出元素,每次操作会获得相应的价值,第i个取出的元素a得到的价值就是i*a,问你能取出的最大价值是多少
解题思路
用 dp[i][j] 表示在这个数组的队首取了 i 个元素在队尾取了 j 个元素的时候的最大价值,那么很容易得出来转移方程式:dp[i][j] = max ( dp[i-1][j] + a[i] * (i+j) , dp[i][j-1] + a[n-j+1] * (i+j));
要么是从队首取要么从队尾取,要注意的是在 i=0 或者 j=0 的时候要特殊处理一下。
最后最大的 dp[i][n-i] 就是答案啦
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[2005];
int dp[2005][2005];
int main()
{
int n;
while(~scanf("%d",&n))
{
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
a[n+1]=0;
memset(dp,0,sizeof(dp));
for(int i=0; i<=n; i++)
{
for(int j=0; j<=n; j++)
{
if(i==0&&j==0)
dp[i][j]=0;
else if(i==0) //当i=0的时候只能从队尾取
dp[i][j]=dp[i][j-1]+a[n-j+1]*j;
else if(j==0) //当j=0的时候只能从队首取
dp[i][j]=dp[i-1][j]+a[i]*i;
else //找出从队首和队尾取的较大的那个
dp[i][j]=max(dp[i-1][j]+a[i]*(i+j),dp[i][j-1]+a[n-j+1]*(i+j));
}
}
int maxx=0;
for(int i=0; i<=n; i++)
maxx=max(maxx,dp[i][n-i]);
printf("%d\n",maxx);
}
return 0;
}