Treats for the Cows 【POJ 3186】

题目链接 POJ 3186

大概题意

给你一个双向队列,每次可以从队首,或者从队尾取出元素,每次操作会获得相应的价值,第i个取出的元素a得到的价值就是i*a,问你能取出的最大价值是多少

解题思路

用 dp[i][j] 表示在这个数组的队首取了 i 个元素在队尾取了 j 个元素的时候的最大价值,那么很容易得出来转移方程式:dp[i][j] = max ( dp[i-1][j] + a[i] * (i+j) , dp[i][j-1] + a[n-j+1] * (i+j));
要么是从队首取要么从队尾取,要注意的是在 i=0 或者 j=0 的时候要特殊处理一下。
最后最大的 dp[i][n-i] 就是答案啦

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[2005];
int dp[2005][2005];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        for(int i=1; i<=n; i++)
            scanf("%d",&a[i]);
        a[n+1]=0;
        memset(dp,0,sizeof(dp));
        for(int i=0; i<=n; i++)
        {
            for(int j=0; j<=n; j++)
            {
                if(i==0&&j==0)
                    dp[i][j]=0;
                else if(i==0) //当i=0的时候只能从队尾取
                    dp[i][j]=dp[i][j-1]+a[n-j+1]*j;
                else if(j==0) //当j=0的时候只能从队首取
                    dp[i][j]=dp[i-1][j]+a[i]*i;
                else //找出从队首和队尾取的较大的那个
                    dp[i][j]=max(dp[i-1][j]+a[i]*(i+j),dp[i][j-1]+a[n-j+1]*(i+j));
            }
        }
        int maxx=0;
        for(int i=0; i<=n; i++)
            maxx=max(maxx,dp[i][n-i]);
        printf("%d\n",maxx);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值