卡尔曼滤波的通俗理解

简单概括

卡尔曼滤波是一种最优估计,本质上就是从有噪声的测量信号中过滤出对我们最有用的信号。

它的特点在于它并不是只通过当前的测量信号来预估信号,因为测量信号也可能是不准确的,它是有一定误差范围的,因此卡尔曼滤波还结合了被测系统自身的性质(数学建模),给出了一个预估值,最后通过结合测量值和预估值得到最优结果

因为测量值和预估值都是有一定误差范围的,并且误差是符合某种分布的,因此卡尔曼滤波的精髓(那些麻烦的方程)就是如何根据两者的误差分布来得到一个新的更加准确的误差分布。

举例说明

例子一:温度版本
例子二:小车版本
例子三:养猪版本

公式解释(线性离散系统)

一、系统的建模方程
如果你对卡尔曼滤波有个大致了解,那么应该清楚卡尔曼滤波有着非常经典的五个公式!那么在给出卡尔曼滤波经典的五个方程之前,先给出这五个方程基于的系统模型,因为总得对被测系统进行数学建模后才能分析嘛。

二、卡尔曼滤波经典的五个方程

卡尔曼滤波进阶

引导语:上面的公式是针对线性系统的,但是大部分系统都是非线性的,那怎么办呢?于是有了扩展卡尔曼滤波(EKF)无迹卡尔曼滤波(UKF
,然而这两个又是假设噪声是高斯分布的,那么噪声不是高斯分布的时候呢?于是又有了粒子滤波(PF)

简单概括(快速认识):

  1. 扩展卡尔曼滤波(EKF)的思想在于把非线性系统进行局部线性化,主要通过泰勒展开的方式来进行局部展开,然后再进行卡尔曼滤波
发布了7 篇原创文章 · 获赞 13 · 访问量 4802
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览