1 回溯算法基本原理
**算法思想:**在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根节点出发深度搜索解空
间树。当搜索到某一节点时,要先判断该节点是否包含问题的解,如果包含就从该节点出发继续深度搜
索下去,否则逐层向上回溯。一般在搜索的过程中都会添加相应的剪枝函数,避免无效解的搜索,提高
算法效率。
**解空间:**解空间就是所有解的可能取值构成的空间,一个解往往包含了得到这个解的每一步,往往就是
对应解空间树中一条从根节点到叶子节点的路径。子集树和排列树都是一种解空间,它们不是真实存在
的数据结构,也就是说并不是真的有这样一颗树,只是抽象出的解空间树。
例1:调用了多少次{1,2,3}
#include<iostream>
using namespace std;
void backtracking(int arr[], int i, int length) {
if(i == length) {
for(int j = 0; j < length; ++j) {
cout << arr[j] << " ";
}
cout << endl;
}
else {
backtracking(arr, i + 1, length);
backtracking(arr, i + 1, length);
}
}
int main() {
int arr[] = {1, 2, 3};
int length = sizeof(arr)/sizeof(arr[0]);
backtracking(arr, 0, length);
system("pause");
return 0;
}
运行结果:
通过递归,调用了8次{1,2,3},每运行一次,调用两次函数。
例2:子集树
打印出{1,2,3}的所有子集
设置1为选择,0为不选择
#include<iostream>
using namespace std;
//arr为原始数组 i为数组起始下标 length为遍历的层数i==length==3 添加辅助数组x[]
void backtracking(int arr[], int i, int length, int x[]) {
if(i == length) {
for(int j = 0; j < length; ++j) {
if(x[j] == 1) {
cout << arr[j] << " ";
}
}
cout << endl;
}
else {
x[i] = 1;//往左走,选择i节点
backtracking(arr, i + 1, length, x);//遍历i的左孩子
x[i] = 0;//往右走,不选择i节点
backtracking(arr, i + 1, length, x);//遍历i的右孩子
// for(int k = 1; k >= 0; --k) {
// x[i] = k;
// backtracking(arr, i, length, x);
// }
}
}
int main() {
int arr[] = {1, 2, 3};
int length = sizeof(arr)/sizeof(arr[0]);
int x[3] = {0};
backtracking(arr, 0, length, x);
system("pause");
return 0;
}
运行结果:
2 回溯算法题型解析
回溯法,一般可以解决如下几种问题:
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
3 回溯算法模板
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
(1)确定backtracking的参数和返回值
(2)确定回溯终止的条件
(3)确定单层回溯的过程