回溯算法(一)——基本原理

1 回溯算法基本原理

**算法思想:**在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根节点出发深度搜索解空
间树。当搜索到某一节点时,要先判断该节点是否包含问题的解,如果包含就从该节点出发继续深度搜
索下去,否则逐层向上回溯。一般在搜索的过程中都会添加相应的剪枝函数,避免无效解的搜索,提高
算法效率。
**解空间:**解空间就是所有解的可能取值构成的空间,一个解往往包含了得到这个解的每一步,往往就是
对应解空间树中一条从根节点到叶子节点的路径。子集树和排列树都是一种解空间,它们不是真实存在
的数据结构,也就是说并不是真的有这样一颗树,只是抽象出的解空间树。

例1:调用了多少次{1,2,3}

#include<iostream>

using namespace std;

void backtracking(int arr[], int i, int length) {
   if(i == length) {
       for(int j = 0; j < length; ++j) {
           cout << arr[j] << " ";
       }
       cout << endl;
   }
   else {
       backtracking(arr, i + 1, length);
       backtracking(arr, i + 1, length);
   }
}

int main() {
    int arr[] = {1, 2, 3};
    int length = sizeof(arr)/sizeof(arr[0]);

    backtracking(arr, 0, length);

    system("pause");
    return 0;
}

运行结果:

通过递归,调用了8次{1,2,3},每运行一次,调用两次函数。

image-20220628153545527

例2:子集树

打印出{1,2,3}的所有子集

设置1为选择,0为不选择

image-20220628160610744

#include<iostream>

using namespace std;

//arr为原始数组 i为数组起始下标 length为遍历的层数i==length==3 添加辅助数组x[]
void backtracking(int arr[], int i, int length, int x[]) {
   if(i == length) {
       for(int j = 0; j < length; ++j) {
           if(x[j] == 1) {
              cout << arr[j] << " ";
           }

       }
       cout << endl;
   }
   else {
       x[i] = 1;//往左走,选择i节点
       backtracking(arr, i + 1, length, x);//遍历i的左孩子
       x[i] = 0;//往右走,不选择i节点
       backtracking(arr, i + 1, length, x);//遍历i的右孩子
        //    for(int k = 1; k >= 0; --k) {
        //        x[i] = k;
        //        backtracking(arr, i, length, x);
        //    }
   }
}

int main() {
    int arr[] = {1, 2, 3};
    int length = sizeof(arr)/sizeof(arr[0]);
    int x[3] = {0};
    
    backtracking(arr, 0, length, x);

    system("pause");
    return 0;
}

运行结果:

image-20220628162012963

2 回溯算法题型解析

image-20220629144048783

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

3 回溯算法模板

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

(1)确定backtracking的参数和返回值

(2)确定回溯终止的条件

(3)确定单层回溯的过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-特立独行的猪-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值