阈值分割

#阈值分割:全局和局部阈值分割
#主要阈值的选取
import numpy as np
import cv2
src = np.array([[123,234,68],
                [33,51,17],
                [48,98,234],
                [129,89,27],
                [45,167,134]])
src[src>150] = 255
src[src<=150] = 0
#opencv提供函数
if __name__ =='__main__':
    src = np.array([[123,234,68],
                [33,51,17],
                [48,98,234],
                [129,89,27],
                [45,167,134]],np.uint8)
    #手动设置阈值
    the = 150
    maxval = 255
    dst = cv2.threshold(src,the,maxval,cv2.THRESH_BINARY)
    #Otsu阈值
    otsuThe = 0
    otsuThe,dst_otsu = cv2.threshold(src,otsuThe,maxval,cv2.THRESH_OTSU)
    print(otsuThe,dst_otsu)
    #TRIANGLE阈值
    triThe = 0
    triThe,dst_tri = cv2.threshold(src,triThe,maxval,cv2.THRESH_TRIANGLE+cv2.THRESH_BINARY_INV)
    print(triThe,dst_tri)

结果

98.0 [[255 255   0]
 [  0   0   0]
 [  0   0 255]
 [255   0   0]
 [  0 255 255]]
232.0 [[255   0 255]
 [255 255 255]
 [255 255   0]
 [255 255 255]
 [255 255 255]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值