1.读取数据
本文采用的是美国成年人收入的数据集
import pandas as pd
from IPython.display import display
data = pd.read_csv(
adult_path, header=None, index_col=False,
names=['age', 'workclass', 'fnlwgt', 'education', 'education-num',
'marital-status', 'occupation', 'relationship', 'race', 'gender',
'capital-gain', 'capital-loss', 'hours-per-week', 'native-country',
'income'])

2.检查字符串的分类数据
使用pandas Series 的value_counts函数,显示类别和出现次数
print(data.gender.value_counts())
#输出
Male 21790
Female 10771
Name: gender, dtype: int64
3.对数据进行one-hot编码
利用get_dummies函数自动转换对象(通常默认类别的结果是字符串)
print("Original features:\n", list

这篇博客详细介绍了如何使用pandas对分类数据进行one-hot编码,通过读取美国成年人收入数据集,检查字符串类别,然后应用get_dummies函数进行编码,并将结果存储为NumPy数组用于后续的逻辑回归模型训练。对于数值类别的处理,博主提出先将其转换为字符串再进行编码。
最低0.47元/天 解锁文章
449

被折叠的 条评论
为什么被折叠?



