量子信息-学习记录2

ch.2. 量子电路模型

2.1. 信息与计算属于物理概念

计算机科学与物理体系的对比

计算机科学物理体系
计算运动
输入始态
规则运动定律
输出末态

(Rolf Landauer, 1961):信息是物理的,它被编码于物理系统的状态中
(David Deutsch 1985):计算是物理过程,它体现于实际的可逆物理过程中

经典信息可以被编码于经典体系,而量子信息则可以被编码于量子体系
经典计算可以被编码于经典物理过程,而量子计算则可以被编码于量子物理过程

2.2. 量子信息和量子计算的定义

定义:(理论物理)QIC是对使用量子力学的基本原理进行信息处理与计算的研究

定义:(实验物理)QIC是对在量子力学体系中进行信息处理和计算的研究

经典力学是量子力学,但量子力学不是经典力学

定义:(经典信息)QIC是对结合量子体系与经典体系去进行信息处理和计算的研究

定义:(量子力学)QIC代表了量子力学与从信息和计算中对量子力学基本原理的理解的当代发展(当代量子力学=量子信息)

2.3. Qubit

全名:Quantum Binary Digit
是量子信息的最小单位

取值范围集是二维的希尔伯特空间 H 2 \mathcal{H}_2 H2= s p a n { ∣ 0 ⟩ , ∣ 1 ⟩ } span\{|0\rangle, |1\rangle\} span{0,1}

态: α ∣ 0 ⟩ + β ∣ 1 ⟩ ,   α ,   β ∈ C ,   ∣ α ∣ 2 + ∣ β ∣ 2 = 1 \alpha|0\rangle+\beta|1\rangle,\ \alpha,\ \beta\in C,\ |\alpha|^2+|\beta|^2=1 α0+β1, α, βC, α2+β2=1
根据线性叠加原理,藏在 H 2 \mathcal H_2 H2中的信息是无限多的

复制:无克隆定理。没有完美的量子复制机
测量:由量子跃迁或波函数坍塌导致的不可逆过程
物理实现:电子自旋或光子极化

态矢组成一个qubit, ∣ 0 ⟩ ,   ∣ 1 ⟩ |0\rangle,\ |1\rangle 0, 1称之为计算的基
∣ ψ ⟩ = α ∣ 0 ⟩ + β ∣ 1 ⟩ |\psi\rangle=\alpha|0\rangle+\beta|1\rangle ψ=α0+β1
将相位因子作用在态矢两边:
e i r ∣ ψ ⟩ = e i r ( α ∣ 0 ⟩ + β ∣ 1 ⟩ ) e^{ir}|\psi\rangle=e^{ir}\left(\alpha|0\rangle+\beta|1\rangle\right) eirψ=eir(α0+β1)

对于态矢而言, α ,   β \alpha,\ \beta α, β是复数,有四个实数
∣ α ∣ 2 + ∣ β ∣ 2 = 1 |\alpha|^2+|\beta|^2=1 α2+β2=1,有一个实数约束
无意义全局相位(无物理意义): e i r ,   r ∈ R e^{ir},\ r\in R eir, rR,有一个实数约束
因此,可以用两个无关的实数变量 ( θ , φ ) (\theta,\varphi) (θ,φ)表示一个qubit(4-2=2自由度):
∣ ψ + ( θ , φ ) ⟩ = cos ⁡ θ 2 ∣ 0 ⟩ + e i φ sin ⁡ θ 2 ∣ 1 ⟩ |\psi_+(\theta,\varphi)\rangle=\cos\dfrac{\theta}{2}|0\rangle+e^{i\varphi}\sin\dfrac{\theta}{2}|1\rangle ψ+(θ,φ)=cos2θ0+eiφsin2θ1
其中, ∣ 0 ⟩ |0\rangle 0= ( 1 0 ) \left(\begin{matrix}1\\0\end{matrix}\right) (10), ∣ 1 ⟩ |1\rangle 1= ( 0 1 ) \left(\begin{matrix}0\\1\end{matrix}\right) (01)
相应的约束为:
0 ≤ θ < π 0\le\theta<\pi 0θ<π
0 ≤ φ < 2 π 0\le\varphi<2\pi 0φ<2π
这正好是球坐标的两个参数,因此可以对应球体
∣ n → ∣ = 1 |\overrightarrow n|=1 n =1的Bloch球体中,定义Bloch矢量: n → = ( sin ⁡ θ cos ⁡ φ ,   sin ⁡ θ sin ⁡ φ ,   cos ⁡ θ ) \overrightarrow n=(\sin\theta\cos\varphi,\ \sin\theta\sin\varphi,\ \cos\theta) n =(sinθcosφ, sinθsinφ, cosθ)
则相比于由0和1表达的经典信息而言,量子信息是一个球

(1) θ = π 2 ,   φ = 0 \theta=\dfrac{\pi}{2},\ \varphi=0 θ=2π, φ=0时, n → = e x → = ( 1 , 0 , 0 ) \overrightarrow n=\overrightarrow{e_x}=(1,0,0) n =ex =(1,0,0) ∣ ψ + ( e x → ) ⟩ = 1 2 ( ∣ 0 ⟩ + ∣ 1 ⟩ ) = ∣ + ⟩ |\psi_+(\overrightarrow{e_x})\rangle=\dfrac{1}{\sqrt{2}}\left(|0\rangle+|1\rangle\right)=|+\rangle ψ+(ex )=2 1(0+1)=+
(2) θ = π 2 ,   φ = π \theta=\dfrac{\pi}{2},\ \varphi=\pi θ=2π, φ=π时, n → = − e x → = ( − 1 , 0 , 0 ) \overrightarrow n=-\overrightarrow {e_x}=(-1,0,0) n =ex =(1,0,0) ∣ ψ + ( − e x → ) ⟩ = 1 2 ( ∣ 0 ⟩ − ∣ 1 ⟩ ) = ∣ − ⟩ |\psi_+(-\overrightarrow {e_x})\rangle=\dfrac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=|-\rang ψ+(ex )=2 1(01)=
(3) θ = π 2 ,   φ = π 2 \theta=\dfrac{\pi}{2},\ \varphi=\dfrac{\pi}{2} θ=2π, φ=2π时, n → = e y → = ( 0 , 1 , 0 ) \overrightarrow n=\overrightarrow {e_y}=(0,1,0) n =ey =(0,1,0) ∣ ψ + ( e y → ) ⟩ = 1 2 ( ∣ 0 ⟩ + i ∣ 1 ⟩ ) = ∣ + ⟩ ′ |\psi_+(\overrightarrow {e_y})\rangle=\dfrac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)=|+\rang' ψ+(ey )=2 1(0+i1)=+
(4) θ = π 2 ,   φ = 3 π 2 \theta=\dfrac{\pi}{2},\ \varphi=\dfrac{3\pi}{2} θ=2π, φ=23π时, n → = − e y → = ( 0 , − 1 , 0 ) \overrightarrow n=-\overrightarrow {e_y}=(0,-1,0) n =ey =(0,1,0) ∣ ψ + ( − e y → ) ⟩ = 1 2 ( ∣ 0 ⟩ − i ∣ 1 ⟩ ) = ∣ − ⟩ ′ |\psi_+(-\overrightarrow {e_y})\rangle=\dfrac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)=|-\rang' ψ+(ey )=2 1(0i1)=
(5) θ = 0 , φ \theta=0, \varphi θ=0,φ任意时, n → = e z → = ( 0 , 0 , 1 ) \overrightarrow n=\overrightarrow {e_z}=(0,0,1) n =ez =(0,0,1) ∣ ψ + ( e z → ) ⟩ = ∣ 0 ⟩ |\psi_+(\overrightarrow{e_z})\rang=|0\rang ψ+(ez )=0
(6) θ = π , φ \theta=\pi, \varphi θ=π,φ任意时, n → = − e z → = ( 0 , 0 , − 1 ) \overrightarrow n=-\overrightarrow {e_z}=(0,0,-1) n =ez =(0,0,1) ∣ ψ + ( e z → ) ⟩ = ∣ 1 ⟩ |\psi_+(\overrightarrow{e_z})\rang=|1\rang ψ+(ez )=1

qubit的更稳定的形式:
{ ∣ ψ + ( θ , φ ) ⟩ ∣ 0 < θ ≤ π ,   0 ≤ φ < 2 π } = { ∣ ψ ⟩ ∣ σ n ∣ ψ ⟩ = ∣ ψ ⟩ } \{|\psi_+(\theta,\varphi)\rang|0<\theta\le\pi,\ 0\le\varphi<2\pi\}=\{|\psi\rang|\sigma_n|\psi\rang=|\psi\rang\} {ψ+(θ,φ)0<θπ, 0φ<2π}={ψσnψ=ψ}
其中: σ n = σ → ⋅ n → = σ x n x + σ y n y + σ z n z \sigma_n=\overrightarrow \sigma\cdot\overrightarrow n=\sigma_xn_x+\sigma_yn_y+\sigma_zn_z σn=σ n =σxnx+σyny+σznz
σ → = ( σ x ,   σ y ,   σ z ) \overrightarrow\sigma=(\sigma_x,\ \sigma_y,\ \sigma_z) σ =(σx, σy, σz)为泡利矩阵, n → = ( n x ,   n y ,   n z ) \overrightarrow n=(n_x,\ n_y,\ n_z) n =(nx, ny, nz)为Bloch矢量

σ x = ( 0 1 1 0 ) ,   σ y = ( 0 − i i 0 ) ,   σ z = ( 1 0 0 − 1 ) \sigma_x=\left(\begin{matrix}0&1\\1 &0\end{matrix}\right),\ \sigma_y=\left(\begin{matrix}0&-i\\i &0\end{matrix}\right),\ \sigma_z=\left(\begin{matrix}1&0\\0 &-1\end{matrix}\right) σx=(0110), σy=(0ii0), σz=(1001)

σ n = ( cos ⁡ θ sin ⁡ θ e − i φ sin ⁡ θ e i φ − cos ⁡ θ ) \sigma_n=\left(\begin{matrix}\cos\theta & \sin\theta e^{-i\varphi}\\\sin\theta e^{i\varphi} & -\cos\theta\end{matrix}\right) σn=(cosθsinθeiφsinθeiφcosθ)

泡利算符的作用

(1) n → = e x → \overrightarrow n=\overrightarrow {e_x} n =ex 时, σ n = σ x = X \sigma_n=\sigma_x=X σn=σx=X(记为 X X X
X ∣ ψ + ( ± e x → ) ⟩ = ± ∣ ψ + ( ± e x → ) ⟩ X|\psi_+(\pm \overrightarrow {e_x})\rang = \pm |\psi_+(\pm \overrightarrow {e_x})\rang Xψ+(±ex )=±ψ+(±ex )
即: X ∣ ± ⟩ = ± ∣ ± ⟩ X|\pm\rang=\pm|\pm\rang X±=±±

(2) n → = e y → \overrightarrow n=\overrightarrow {e_y} n =ey 时, σ n = σ y = Y \sigma_n=\sigma_y=Y σn=σy=Y(记为 Y Y Y
Y ∣ ψ + ( ± e y → ) ⟩ = ± ∣ ψ + ( ± e y → ) ⟩ Y|\psi_+(\pm \overrightarrow {e_y})\rang = \pm |\psi_+(\pm \overrightarrow {e_y})\rang Yψ+(±ey )=±ψ+(±ey )
即: Y ∣ ± ⟩ ′ = ± ∣ ± ⟩ ′ Y|\pm\rang'=\pm|\pm\rang' Y±=±±

(3) n → = e z → \overrightarrow n=\overrightarrow {e_z} n =ez 时, σ n = σ z = Z \sigma_n=\sigma_z=Z σn=σz=Z(记为 Z Z Z
Z ∣ ψ + ( ± e z → ) ⟩ = ± ∣ ψ + ( ± e z → ) ⟩ Z|\psi_+(\pm \overrightarrow {e_z})\rang = \pm |\psi_+(\pm \overrightarrow {e_z})\rang Zψ+(±ez )=±ψ+(±ez )
即: Z ∣ i ⟩ = ( − 1 ) i ∣ i ⟩ Z|i\rang=(-1)^i|i\rang Zi=(1)ii

Note 1: ⟨ ψ + ( θ ,   φ ) ∣ σ → ⋅ m → ∣ ψ + ( θ ,   φ ) ⟩ = m → ⋅ n → \lang\psi_+(\theta,\ \varphi)|\overrightarrow \sigma\cdot\overrightarrow m|\psi_+(\theta,\ \varphi)\rang=\overrightarrow m\cdot \overrightarrow n ψ+(θ, φ)σ m ψ+(θ, φ)=m n

Note 2: ∣ ψ + ( θ ,   φ ) ⟩ = u 1 / 2 ( e z → → n → ) ∣ 0 ⟩ |\psi_+(\theta,\ \varphi)\rang=u_{1/2}(\overrightarrow {e_z}\rightarrow \overrightarrow n)|0\rang ψ+(θ, φ)=u1/2(ez n )0
其中: u 1 / 2 ( e z → → n → ) = ( cos ⁡ θ 2 − e − i φ sin ⁡ θ 2 e i φ sin ⁡ θ 2 cos ⁡ θ 2 ) u_{1/2}(\overrightarrow {e_z}\rightarrow \overrightarrow n)=\left(\begin{matrix}\cos\dfrac{\theta}{2} & -e^{-i\varphi}\sin\dfrac{\theta}{2} \\ e^{i\varphi}\sin\dfrac{\theta}{2} & \cos\dfrac{\theta}{2}\end{matrix}\right) u1/2(ez n )=cos2θeiφsin2θeiφsin2θcos2θ

SU(2)群的旋转表示,描述了绕 e z → + σ n → \overrightarrow {e_z}+\sigma\overrightarrow n ez +σn 的旋转

Note 3: σ n 2 = 1 ,   σ m 2 = 1 \sigma_n^2=1,\ \sigma_m^2=1 σn2=1, σm2=1,特征值: ± 1 \pm1 ±1
σ n ∣ ψ ± ( θ , φ ) ⟩ = ± ∣ ψ ± ( θ , φ ) ⟩ \sigma_n|\psi_\pm(\theta,\varphi)\rang=\pm|\psi_\pm(\theta,\varphi)\rang σnψ±(θ,φ)=±ψ±(θ,φ)

∣ ψ − ( θ , φ ) ⟩ = − e − i φ sin ⁡ θ 2 ∣ 0 ⟩ + cos ⁡ θ 2 ∣ 1 ⟩ |\psi_-(\theta,\varphi)\rang=-e^{-i\varphi}\sin\dfrac{\theta}{2}|0\rang+\cos\dfrac{\theta}{2}|1\rang ψ(θ,φ)=eiφsin2θ0+cos2θ1也能够表示一个qubit

密度矩阵

而密度矩阵也能构成一个qubit:
定义:当 ρ ≥ 0 \rho\ge 0 ρ0并且 t r ( ρ ) = 1 tr(\rho)=1 tr(ρ)=1时, ρ \rho ρ是一个密度矩阵
ρ ( p → ) = 1 2 ( I 2 + p → ⋅ σ → ) \rho (\overrightarrow{p})=\dfrac{1}{2}(I_2+\overrightarrow p\cdot \overrightarrow \sigma) ρ(p )=21(I2+p σ )
其中, p → \overrightarrow p p 是极化向量, I 2 I_2 I2 2 × 2 2\times 2 2×2的单位阵, σ \sigma σ是泡利矩阵

举例1: ∣ p → ∣ = 1 |\overrightarrow p|=1 p =1时,是Bloch向量 p → = n → \overrightarrow p=\overrightarrow n p =n ρ ( n → ) = ∣ ψ + ( n → ) ⟩ ⟨ ψ + ( n → ) ∣ \rho(\overrightarrow n)=|\psi_+(\overrightarrow n)\rang\lang\psi_+(\overrightarrow n)| ρ(n )=ψ+(n )ψ+(n )。属于纯状态(pure state)情形(量子统计力学)

举例2: ∣ p → ∣ < 1 |\overrightarrow p|<1 p <1,属于混合态(mixed state)情形

举例3: ∣ p → ∣ = 0 |\overrightarrow p|=0 p =0 ρ ( 0 ) = 1 2 I 2 \rho(0)=\dfrac{1}{2}I_2 ρ(0)=21I2

2.4. 双qubit体系

对于双qubit体系,计算的基为 H 4 = H 2 ⊗ H 2 \mathcal H_4=\mathcal H_2 \otimes \mathcal H_2 H4=H2H2
H 4 = s p a n { ∣ x 1 x 2 ⟩ ∣ x 1 ,   x 2 = 0 , 1 } = s p a n { ∣ 00 ⟩ ,   ∣ 01 ⟩ ,   ∣ 10 ⟩ ,   ∣ 11 ⟩ } \mathcal H_4=span\{|x_1x_2\rang|x_1,\ x_2=0,1\}\\=span\{|00\rang,\ |01\rang,\ |10\rang,\ |11\rang\} H4=span{x1x2x1, x2=0,1}=span{00, 01, 10, 11}

Bell基: H 4 = s p a n { ∣ β x 1 x 2 ⟩ ∣ x 1 ,   x 2 = 0 , 1 } \mathcal H_4=span\{|\beta_{x_1x_2}\rang|x_1,\ x_2=0,1\} H4=span{βx1x2x1, x2=0,1}

Bell态:
∣ β 00 ⟩ = ∣ 00 ⟩ + ∣ 11 ⟩ 2 ,   ∣ β 10 ⟩ = ∣ 00 ⟩ − ∣ 11 ⟩ 2 |\beta_{00}\rang=\dfrac{|00\rang+|11\rang}{\sqrt 2},\ |\beta_{10}\rang=\dfrac{|00\rang-|11\rang}{\sqrt 2} β00=2 00+11, β10=2 0011

∣ β 01 ⟩ = ∣ 01 ⟩ + ∣ 10 ⟩ 2 ,   ∣ β 11 ⟩ = ∣ 01 ⟩ − ∣ 10 ⟩ 2 |\beta_{01}\rang=\dfrac{|01\rang+|10\rang}{2},\ |\beta_{11}\rang = \dfrac{|01\rang-|10\rang}{\sqrt 2} β01=201+10, β11=2 0110

∣ β x 1 x 2 ⟩ = 1 2 ( ∣ 0 x 2 ⟩ + ( − 1 ) x 1 ∣ 0 x 2 ‾ ⟩ ) |\beta_{x_1x_2}\rang=\dfrac{1}{\sqrt{2}}\left(|0x_2\rang+(-1)^{x_1}|0\overline{x_2}\rang\right) βx1x2=2 1(0x2+(1)x10x2)

Note 1: ∣ β x 1 x 2 ⟩ ,   x 1 , x 2 = 0 , 1 |\beta_{x_1x_2}\rang,\ x_1,x_2=0,1 βx1x2, x1,x2=0,1被称作Bell不等价或EPR pair态(Einstein-Poldolskky-Rossen)的Bell态

Note 2:正交基 { ∣ β x 1 x 2 ⟩ ∣ x 1 , x 2 = 0 , 1 } \{|\beta_{x_1x_2}\rang|x_1,x_2=0,1\} {βx1x2x1,x2=0,1}具有正交关系 ⟨ β x 1 x 2 ∣ β x 1 ′ x 2 ′ ⟩ = δ x 1 x 1 ′ δ x 2 x 2 ′ \lang\beta_{x_1x_2}|\beta_{x_1'x_2'}\rang=\delta_{x_1x_1'}\delta_{x_2x_2'} βx1x2βx1x2=δx1x1δx2x2
关系:
∑ x 1 x 2 = 0 ,   1 ∣ β x 1 x 2 ⟩ ⟨ β x 1 x 2 ∣ = I 2 ⊗ I 2 \sum\limits_{x_1x_2=0,\ 1}|\beta_{x_1x_2}\rang\lang\beta_{x_1x_2}|=I_2\otimes I_2 x1x2=0, 1βx1x2βx1x2=I2I2

Note 3:Bell变换是Bell基和计算的基之间的独一无二的变换

2.5. 三qubit体系

H 8 = H 2 ⊗ H 2 ⊗ H 2 = s p a n { ∣ 000 ⟩ ,   ∣ 001 ⟩ ,   ⋯   , ∣ 111 ⟩ } \mathcal H_8=\mathcal H_2\otimes\mathcal H_2\otimes\mathcal H_2=span\{|000\rang,\ |001\rang,\ \cdots\ ,|111\rang\} H8=H2H2H2=span{000, 001,  ,111}

GHZ基:
∣ G H Z ( x 1 , x 2 , x 3 ) ⟩ ± = 1 2 ( ∣ x 1 x 2 x 3 ⟩ ± ∣ x 1 ‾ x 2 ‾ x 3 ‾ ⟩ ) |GHZ(x_1,x_2,x_3)\rang_{\pm}=\dfrac{1}{\sqrt{2}}\left(|x_1x_2x_3\rang\pm|\overline{x_1}\overline{x_2}\overline{x_3}\rang\right) GHZ(x1,x2,x3)±=2 1(x1x2x3±x1x2x3)

Note:GHZ基是Bell基的延伸

2.6. n-qubit

H 2 n \mathcal H_{2^n} H2n空间

GHZ基:
∣ G H Z ( x 1 , x 2 , x 3 , …   , x n ) ⟩ ± = 1 2 ( ∣ x 1 x 2 x 3 … x n ⟩ ± ∣ x 1 ‾ x 2 ‾ x 3 ‾ … x n ‾ ⟩ ) |GHZ(x_1,x_2,x_3,\dots\ ,x_n)\rang_{\pm}=\dfrac{1}{\sqrt{2}}\left(|x_1x_2x_3\dots x_n\rang\pm|\overline{x_1}\overline{x_2}\overline{x_3}\dots\overline{x_n}\rang\right) GHZ(x1,x2,x3, ,xn)±=2 1(x1x2x3xn±x1x2x3xn)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于PyTorch的Embedding和LSTM的自动写诗实验LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。
CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的这个代码主要是研究手写数字的识别效率,用卷积神经网络算法来实现,用的是官方手写字体数据,能够显现百分之九十以上的识别率+使用说明文档 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
基于LSTM+CNN的自然语言处理,基于单维LSTM、多维LSTM时序预测算法和多元线性回归算法的预测模型LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值