量子信息-学习记录5

ch.4. Control Unitary门(续)

普适量子门集(之前打成了“普遍”)

  定义:一个由基本量子门组成的集合,如果集合中的门可以用来构成任何酉矩阵,则这个集合称作普适门集

  定理:Deutsch门(1985)构成了一个普适量子门集

  定理:Barence门(1995)与SWAP门构成了一个普适量子门集

  定理:任意通用的2-qubit门与SWAP门构成了一个普适量子门集

  批注:Deutsch门 D g D_g Dg可以被表示为Brenco门 B g B_g Bg及其逆向门 B g + B_g^+ Bg+、以及CNOT的组合

  批注:Barenco门的逆向门 B g + B_g^+ Bg+和CNOT门可以被表示为Barenco门的组合

  批注:Deutsch门 D g D_g Dg可以被表示为Barenco门和SWAP门的组合

  定理:{CNOT门,单qubit门}是一个普适量子门集
  大致证明思路:
  1、引理:对于任意的单qubit门,都有 U = e i α R z ( β ) R y ( γ ) R z ( δ ) U=e^{i\alpha}R_z(\beta)R_y(\gamma)R_z(\delta) U=eiαRz(β)Ry(γ)Rz(δ),其中 α \alpha α β \beta β γ \gamma γ δ \delta δ为实数
  2、引理:对于任意的单qubit门,都有 U = e i α A X B X C U=e^{i\alpha}AXBXC U=eiαAXBXC,其中 A B C = I 2 ABC=I_2 ABC=I2 X = σ x X=\sigma_x X=σx
  3、引理:任意CU门可以分解
  4、令上述CU门中的 U = R g U=R_g U=Rg(Barenco门),则说明Barenco门可以表示为CNOT门和单qubit门A、B、C、 I 2 I_2 I2的组合
  5、SWAP=CNOT 12 _{12} 12CNOT 21 _{21} 21CNOT 12 _{12} 12
最后得到{Barenco门,SWAP门}={CNOT门,单qubit门}

ch.5. 贝尔不等式

量子力学批注

  弱局部性与强局部性(场代数)

  爱因斯坦的观点:量子力学=local hidden-variable(LHV) theory
  1、标准的量子力学是不完整的,非相对论的
  2、一个完整的理论必须是确定的
  爱因斯坦提出的理论得到了贝尔不等式的否决

CHSH不等式

  标准的量子力学:海森堡不确定性关系说明互补的两个变量不能同时被赋值
  爱因斯坦的LHV模型:互补的两个变量已经被隐藏变量事先确定好了,因此它们可以被同时赋值

实验设计

  让Alice和Bob站在比较远的两个地方,并发送一个状态为 ∣ β 11 ⟩ |\beta_{11}\rang β11的光量子。对于观察者来说,发射的两个qubit:Q和R,具有观测值q和r,而接收的S和T则分别具有观测值s和t。

  设两种可能的观测值分别为1和-1,则q+r=0或q-r=0,由此推知q-r=2q= ± \pm ± 2或q+r=2q= ± \pm ± 2。因此,观测量:

m = ( q + r ) ⋅ s + ( q − r ) ⋅ t = ± 2 m=(q+r)\cdot s+(q-r)\cdot t=\pm 2 m=(q+r)s+(qr)t=±2

  记概率分布为 p ( q ,   r ,   s ,   t ) p(q,\ r,\ s,\ t) p(q, r, s, t),则:

⟨ M ⟩ = ∑ q , r , s , t p ( q , r , s , t ) ( ( q + r ) ⋅ s + ( q − r ) ⋅ t ) ≤ ∑ q , r , s , t p ( q , r , s , t ) × 2 = 2 \begin{aligned}\lang M\rang&=\sum\limits_{q,r,s,t}p(q,r,s,t)((q+r)\cdot s+(q-r)\cdot t)\\&\le\sum\limits_{q,r,s,t}p(q,r,s,t)\times 2\\ &=2\end{aligned} M=q,r,s,tp(q,r,s,t)((q+r)s+(qr)t)q,r,s,tp(q,r,s,t)×2=2

  即: ⟨ M ⟩ ≤ 2 \lang M \rang \le 2 M2

  另一方面:

⟨ M ⟩ = ∑ q , r , s , t p ( q , r , s , t ) q s + ∑ q , r , s , t p ( q , r , s , t ) r s + ∑ q , r , s , t p ( q , r , s , t ) q t − ∑ q , r , s , t p ( q , r , s , t ) r t = ⟨ Q S ⟩ + ⟨ R S ⟩ + ⟨ Q T ⟩ − ⟨ R T ⟩ \begin{aligned}\lang M\rang&=\sum\limits_{q,r,s,t}p(q,r,s,t)qs+\sum\limits_{q,r,s,t}p(q,r,s,t)rs\\&+\sum\limits_{q,r,s,t}p(q,r,s,t)qt-\sum\limits_{q,r,s,t}p(q,r,s,t)rt\\&=\lang QS \rang+\lang RS \rang+\lang QT \rang-\lang RT \rang\end{aligned} M=q,r,s,tp(q,r,s,t)qs+q,r,s,tp(q,r,s,t)rs+q,r,s,tp(q,r,s,t)qtq,r,s,tp(q,r,s,t)rt=QS+RS+QTRT

  得到爱因斯坦LHV模型中的CHSH不等式:

⟨ Q S ⟩ + ⟨ R S ⟩ + ⟨ Q T ⟩ − ⟨ R T ⟩ ≤ 2 \lang QS \rang+\lang RS \rang+\lang QT \rang-\lang RT \rang \le 2 QS+RS+QTRT2

  在标准量子力学中:

Q ^ = σ → ( A ) ⋅ q → ,   R ^ = σ → ( A ) ⋅ r → \hat Q = \overrightarrow\sigma^{(A)}\cdot \overrightarrow q,\ \hat R = \overrightarrow\sigma^{(A)}\cdot \overrightarrow r Q^=σ (A)q , R^=σ (A)r

S ^ = σ → ( B ) ⋅ s → ,   T ^ = σ → ( B ) ⋅ t → \hat S = \overrightarrow\sigma^{(B)}\cdot \overrightarrow s,\ \hat T = \overrightarrow\sigma^{(B)}\cdot \overrightarrow t S^=σ (B)s , T^=σ (B)t

  因此:

⟨ Q ^ S ^ ⟩ = A B ⟨ β 11 ∣ ( σ → ( A ) ⋅ q → ) ⊗ ( σ → ( B ) ⋅ s → ) ∣ β 11 ⟩ A B = − q → ⋅ s → \lang \hat Q\hat S\rang=_{AB}\lang\beta_{11}|(\overrightarrow\sigma^{(A)}\cdot \overrightarrow q)\otimes(\overrightarrow\sigma^{(B)}\cdot \overrightarrow s)|\beta_{11}\rang_{AB}=-\overrightarrow q\cdot\overrightarrow s Q^S^=ABβ11(σ (A)q )(σ (B)s )β11AB=q s

  定义在Bloch球上的单位基矢:

Q ^ = z ,   R ^ = x ,   S ^ = 1 2 ( x + z ) ,   T ^ = 1 2 ( z − x ) \hat Q=z,\ \hat R=x,\ \hat S=\dfrac{1}{\sqrt{2}}(x+z),\ \hat T=\dfrac{1}{\sqrt{2}}(z-x) Q^=z, R^=x, S^=2 1(x+z), T^=2 1(zx)

  则 ⟨ Q ^ S ^ ⟩ \lang \hat Q\hat S\rang Q^S^ ⟨ R ^ S ^ ⟩ \lang \hat R\hat S\rang R^S^ ⟨ Q ^ T ^ ⟩ \lang \hat Q\hat T\rang Q^T^均等于 − cos ⁡ π 4 = − 1 2 -\cos\dfrac{\pi}{4}=-\dfrac{1}{\sqrt{2}} cos4π=2 1,而 ⟨ R ^ T ^ ⟩ = − cos ⁡ 3 π 4 = 1 2 \lang \hat R\hat T\rang=-\cos\dfrac{3\pi}{4}=\dfrac{1}{\sqrt{2}} R^T^=cos43π=2 1

  因此: ∣ ⟨ M ⟩ ∣ = 2 2 ≥ 2 |\lang M\rang|=2\sqrt{2}\ge 2 M=22 2,这违背了CHSH不等式,而这又是实验能够有力支撑的,因此,LHV理论在这方面上有所缺陷

GHZ定理

  此定理证明了量子力学与LHV之间的矛盾

实验设计

  Alice(I),Bob(II)与Charlie(III)站在空间上相互分离的三个地方,相互交流一个GHZ态的3-qubit: ∣ G H Z ⟩ 3 = 1 2 ( ∣ 000 ⟩ + ∣ 111 ⟩ ) 3 |GHZ\rang_3=\dfrac{1}{\sqrt{2}}(|000\rang+|111\rang)_3 GHZ3=2 1(000+111)3

  选择四种具有如下形式的可观察量:

{ A : = σ x ( 1 ) σ y ( 2 ) σ y ( 3 ) B : = σ y ( 1 ) σ x ( 2 ) σ y ( 3 ) C : = σ y ( 1 ) σ y ( 2 ) σ x ( 3 ) D : = σ x ( 1 ) σ x ( 2 ) σ x ( 3 ) \left\{\begin{aligned}A&:=\sigma_x^{(1)}\sigma_y^{(2)}\sigma_y^{(3)}\\B&:=\sigma_y^{(1)}\sigma_x^{(2)}\sigma_y^{(3)}\\C&:=\sigma_y^{(1)}\sigma_y^{(2)}\sigma_x^{(3)}\\D&:=\sigma_x^{(1)}\sigma_x^{(2)}\sigma_x^{(3)}\end{aligned}\right. ABCD:=σx(1)σy(2)σy(3):=σy(1)σx(2)σy(3):=σy(1)σy(2)σx(3):=σx(1)σx(2)σx(3)

  这种形式具有如下特点:

A 2 = B 2 = C 2 = D 2 = I 8 A^2=B^2=C^2=D^2=I_8 A2=B2=C2=D2=I8

A B C D = − I 8 ABCD=-I_8 ABCD=I8

A B C D ∣ G H Z ⟩ 3 = − ∣ G H Z ⟩ 3 ABCD|GHZ\rang_3=-|GHZ\rang_3 ABCDGHZ3=GHZ3

  在LHV中,A、B、C、D可以被确定为如下形式:

{ A = m x 1 m y 2 m y 3 B = m y 1 m x 2 m y 3 C = m y 1 m y 2 m x 3 D = m x 1 m x 2 m x 3 \left\{\begin{aligned}A&=m_x^{1}m_y^{2}m_y^{3}\\B&=m_y^{1}m_x^{2}m_y^{3}\\C&=m_y^{1}m_y^{2}m_x^{3}\\D&=m_x^{1}m_x^{2}m_x^{3}\end{aligned}\right. ABCD=mx1my2my3=my1mx2my3=my1my2mx3=mx1mx2mx3

  以A为例,当 σ x 1 σ y 2 \sigma_x^1\sigma_y^2 σx1σy2被确定时, σ y 3 \sigma_y^3 σy3也随之被确定,这三个算符是相互对易的。因此, m x 1 ,   m y 2 ,   m y 3 m_x^1,\ m_y^2,\ m_y^3 mx1, my2, my3可以被同时确定( m α i = ± 1 m_\alpha^i=\pm 1 mαi=±1),以此类推:

A B C D = 1 ABCD=1 ABCD=1

{ L H V : A B C D = 1 Q M : A B C D = − 1 \left\{\begin{aligned}&LHV:ABCD=1\\&QM:ABCD=-1\end{aligned}\right. {LHV:ABCD=1QM:ABCD=1

  实验证明了ABCD=-1,因此,LHV在此处被否决

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值