Pytorch划分数据集问题

Q1:验证集准确率在0.5左右

在Cifar10数据集上实现二分类任务,

模型结构:

self.model = models.resnet18(pretrained=False)

在200个epoch训练过程中,训练集的准确率在0.9左右,而验证集的正确率维持在0.5左右。

原因分析:

训练集为10000张,其中划分了2000张给验证集,而我刚开始划分数据集的逻辑是将前百分之80的数据充当训练集,后百分之20的数据充当验证集,经过调试之后发现训练集中主要学习鸟(50%)+猫(30%)的图片,而验证集中都是猫(20%)的图片。但是理论上它应该能学习到这种性质吧。。

修改后:

采用以下划分方式,很方便的随机打乱数据,最终训练集准确率0.91左右,验证集0.89左右,测试集0.86左右

from torch.utils.data import random_split

train_set, valid_set = random_split(img_path,[train_len,val_len]);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>