HPILN: a feature learning framework for cross-modality person re-identification
当前的问题及概述:
提出了一种新的特征学习框架:hard pentaplet loss和identity loss network (HPILN),(HPILN)。在该框架中,对现有的单模态再识别模型进行了修正以适应交叉模态场景,并采用专门设计的hard pentaplet loss和identity loss来提高修正后的交叉模态再识别模型的准确性。
模型及loss:
本文提出了基于特征学习框架的RGB-IR识别的HP loss模型。该框架包括三个主要部分:(i)提取RGB和IR图像共同特征的Re-ID neural network;(ii)硬采矿抽样(hard mining sampling)法,得到the hardest pentaplet pair集合;(iii)特征学习的HPI loss,包括pentaplet loss 和 identity loss。其中,第二部分的2PK为训练批大小。在每个训练批次中,随机选取P个个体,每个个体随机选取K张RGB图像和K张IR图像。
1.Re-ID neural network
大多数的Re-ID模型至少有两个完全连通的层(简称FC-1和FC-2),其中FC-2用于身份丢失,FC-1的输出作为特征嵌入,见下图,通过基于度量学习的ranking loss进行监督。Cross entropy loss及其变体通常用作identity loss,而ranking loss通常使用基于度量学习的损失函数,如HT loss。联合训练的identity和ranking loss可以学习更多的判别特征嵌入。
本文在该模块进行了两个地方的改进:i是identity loss通常使用softmax loss来表示,ii 设计了一个新的ranking loss称为HP loss:
2.HP loss
2.1HT loss
HT loss是triplet loss的变体,其中xa为anchor image,xp为positive i