2019 IET之ReID:HPILN: a feature learning framework for cross-modality person re-identification

HPILN: a feature learning framework for cross-modality person re-identification
当前的问题及概述
提出了一种新的特征学习框架:hard pentaplet loss和identity loss network (HPILN),(HPILN)。在该框架中,对现有的单模态再识别模型进行了修正以适应交叉模态场景,并采用专门设计的hard pentaplet loss和identity loss来提高修正后的交叉模态再识别模型的准确性。

模型及loss
在这里插入图片描述
本文提出了基于特征学习框架的RGB-IR识别的HP loss模型。该框架包括三个主要部分:(i)提取RGB和IR图像共同特征的Re-ID neural network;(ii)硬采矿抽样(hard mining sampling)法,得到the hardest pentaplet pair集合;(iii)特征学习的HPI loss,包括pentaplet loss 和 identity loss。其中,第二部分的2PK为训练批大小。在每个训练批次中,随机选取P个个体,每个个体随机选取K张RGB图像和K张IR图像。
1.Re-ID neural network
大多数的Re-ID模型至少有两个完全连通的层(简称FC-1和FC-2),其中FC-2用于身份丢失,FC-1的输出作为特征嵌入,见下图,通过基于度量学习的ranking loss进行监督。Cross entropy loss及其变体通常用作identity loss,而ranking loss通常使用基于度量学习的损失函数,如HT loss。联合训练的identity和ranking loss可以学习更多的判别特征嵌入。
在这里插入图片描述
本文在该模块进行了两个地方的改进:i是identity loss通常使用softmax loss来表示,ii 设计了一个新的ranking loss称为HP loss:
2.HP loss
2.1HT loss
HT loss是triplet loss的变体,其中xa为anchor image,xp为positive i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值