论文阅读23 | A feature learning framework for cross-modality person re-identification

该文章提出了一种新的损失函数——Hardpentapletloss,它基于难挖掘的五元组样本,用于跨模态行人重识别任务。在每个批次中,选取样本作为anchor,然后分别确定全局正样本、全局负样本、跨模态正样本和跨模态负样本来构建三元组损失。网络框架采用单模态ReID模型,并通过复制IR图像通道以适应RGB模型。实验表明,这种方法在SYSU-MM01数据集上取得了较好的性能,最佳模型rank1达到41.36%。整个框架包括特征提取、难样本挖掘和HPI损失学习三个部分。
摘要由CSDN通过智能技术生成

这篇文章主要的贡献在于提出了一种难挖掘的五元组损失,其实是由两个难挖掘三元组损失组成。每一批读入P个ID,每个ID有K张RGB和K张IR,依次选择每个样本作为anchor。

对于一个anchor,从两个模态相同ID的样本中选择距离最远的作为全局正样本,从两个模态不同ID的样本中选择距离最近的作为全局负样本,构成三元组损失Lhgt。从另一模态相同ID样本中距离最远的作为跨模态正样本,从另一模态不同ID样本中选择距离最近的作为跨模态负样本,加上anchor构成三元组损失Lhct。值得注意的是:对于一个anchor,它的全局正样本和跨模态正样本可能是相同的,全局负样本和跨模态负样本可能是相同的。

最终计算这两种损失的和形成五元组损失Hard pentaplet loss,加上ID损失,构成总损失。公式:

三元组损失Lhgt:在这里插入图片描述)
三元组损失Lhct:
在这里插入图片描述)
五元组损失Hard pentaplet loss:

跨模态融合变压器用于多光谱目标检测是一种先进的目标检测方法。多光谱图像由不同波段的传感器捕获,每个波段提供了目标的不同特征信息。传统的目标检测算法往往局限于单一光谱波段,无法在多光谱图像中有效提取目标信息。而跨模态融合变压器能够将不同波段的光谱信息融合,并在融合后的特征上进行目标检测,从而提高目标检测的准确性和鲁棒性。 跨模态融合变压器结合了Transformer模型和跨模态融合方法。Transformer模型是一种基于自注意力机制的神经网络架构,能够有效地建模长距离依赖关系。它将目标的特征信息转化为一系列的注意力权重,然后利用这些权重来对不同波段的特征进行加权融合。这种融合方式可以将信息从一个波段传递到另一个波段,使得各个波段的特征能够共同影响目标检测结果。 跨模态融合变压器还引入了多尺度的注意力机制,以适应不同尺度目标的检测需求。它通过在特征提取的过程中引入多个不同大小的注意力窗口,来对不同尺度的目标进行建模。通过这种方式,跨模态融合变压器能够在多光谱图像中准确地检测到各种尺度的目标。 总之,跨模态融合变压器是一种能够融合不同波段特征并进行多光谱目标检测的先进方法。它的引入可以提高目标检测的准确性和鲁棒性,适用于各种需要从多光谱图像中提取目标信息的应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值