简述最小二乘法

最小二乘法又称最小平方法,是一种数学优化方法,它通过最小化误差的平方和寻找数据的最佳函数匹配。经常用于回归问题,可以方便的求得未知参数。(曲线拟合,最小化能量或者最大化熵等问题)

  • 数学定义
    • 给定函数 f ( x ; α 0 , α 1 , α 2 , ⋯   , α m ) f(x;\alpha_{0},\alpha_{1},\alpha_{2},\cdots,\alpha_{m}) f(x;α0,α1,α2,,αm)及其在N个不同点 x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn的测量值 y 1 , y 2 , ⋯   , y n y_{1},y_{2},\cdots,y_{n} y1,y2,,yn,即 f ( x ; α 0 , α 1 , α 2 , ⋯   , α m ) f(x;\alpha_{0},\alpha_{1},\alpha_{2},\cdots,\alpha_{m}) f(x;α0,α1,α2,,αm)得值,那么确定位置参数集,可以通过使得下式最小获得(n>m时有解)
      m i n α J ( α ) = 1 n ∑ i = 1 n [ f ( x ; α 0 , α 1 , α 2 , ⋯   , α m ) − y i ] 2 min_{\alpha}J(\alpha)=\frac{1}{n}\sum_{i=1}^{n}[f(x;\alpha_{0},\alpha_{1},\alpha_{2},\cdots,\alpha_{m})-y_{i}]^{2} minαJ(α)=n1i=1n[f(x;α0,α1,α2,,αm)yi]2
    • f ( x ; α 0 , α 1 , α 2 , ⋯   , α m ) = α 0 + ∑ j = 1 m α j φ j ( x j ) , 若 φ j ( x j ) = x j f(x;\alpha_{0},\alpha_{1},\alpha_{2},\cdots,\alpha_{m})=\alpha_{0}+\sum_{j=1}^{m}\alpha_{j}\varphi_{j}(x_{j}),若\varphi_{j}(x_{j})=x_{j} f(x;α0,α1,α2,,αm)=α0+j=1mαjφj(xj),φj(xj)=xj,则f为线性函数
  • 方程求解
    • A α = y A\alpha=y Aα=y
    • A T A α = A T y A^{T}A\alpha=A^{T}y ATAα=ATy
    • α = ( A T A ) − 1 A T y \alpha=(A^{T}A)^{-1}A^{T}y α=(ATA)1ATy
    • 病态矩阵:如果对数据进行较小得扰动,则得出的结果具有很大的波动。
  • 梯度下降法
    • m i n α J ( α ) = ∥ A α − y ∥ 2 2 min_{\alpha}J(\alpha)=\left \| A\alpha -y \right \| _{2}^{2} minαJ(α)=Aαy22
    • for j in range(epochs)
      \quad for ( x k , y k x_{k},y_{k} xk,yk) in traning set
      α = α − λ ∂ J ( α ) ∂ α \quad \quad \alpha=\alpha-\lambda \frac{\partial J(\alpha )}{\partial \alpha } α=αλαJ(α)
      \quad end
      end
    • 初始值会导致梯度下降法得到不同的局部最优解;学习率影响收敛速度,甚至是否收敛。
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值