原
矩阵论笔记:奇异值分解SVD(Singular Value Decomposition)以及应用总结!
版权声明:本文为博主原创文章,引用时请附上链接。 https://blog.csdn.net/abc13526222160/article/details/88562191 </div>
<link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-f57960eb32.css">
<div id="content_views" class="markdown_views prism-dracula">
<!-- flowchart 箭头图标 勿删 -->
<svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
<path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path>
</svg>
<div class="table-box"><table><tbody><tr><td bgcolor="black"><font size="3" color="yellow">奇异值分解SVD(Singular Value Decomposition)以及应用总结!</font></td></tr></tbody></table></div>
文章目录
奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解(Matrix Decomposition),奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。这篇文章主要说下奇异值分解,这个方法在机器学习的一些算法里占有重要地位。
一、相关概念
1.1、正交矩阵
如果一个矩阵满足以下几个条件,则此矩阵就是正交矩阵:
- 是一个方阵
- 和自己的转置矩阵的矩阵乘积 = 单位矩阵 E E E EE E EEE(1)的具体求解过程就不多叙述了,可以回忆一下大学时的线性代数。简单地有如下关系: A q i = Aqi= Aqi=