S变换的Python代码

S变换的Python代码

S变换简介

S变换,又称为Stockwell变换,由R. G. Stockwell于1996年提出。具体的定义如下:
在这里插入图片描述
S变换在傅里叶域的表示形式为:
在这里插入图片描述
离散的S变换为:
在这里插入图片描述
S变换克服了短时傅里叶变换固定窗函数宽度的缺陷,采用了一个随频率变化的高斯窗函数。它的窗函数宽度与频率的倒数成正比,高频时用窄窗,低频用宽窗。所以具有多分辨率分析的思想,也可以看作相位校正的小波变换。

S变换Python程序

def st(t,s, freqlow, freqhigh, alpha):
    TimeLen=len(t)
    dt=t[1]-t[0]
    nLevel=int((freqhigh-freqlow)/alpha)+1
    fre=np.linspace(freqlow,freqhigh,nLevel)
    wcoefs=np.zeros((nLevel,TimeLen),dtype=complex)
    temp = np.zeros((1, TimeLen),dtype=complex)
    sigma_f = np.power(fre,-1)
    for m in range(0,nLevel):
        f=fre[m]
        for n in range(0,TimeLen):
            Gauss_st= (1/(math.sqrt(2*math.pi)*sigma_f[m]))*np.exp(-0.5*(np.power(n*dt-t,2)/(sigma_f[m]*sigma_f[m])))*np.exp(-1.0j*2*math.pi*f*t)
            temp[0,n]=np.sum(np.dot(s, Gauss_st))*dt
        wcoefs[[m],:]=temp
    return wcoefs

R. G. Stockwell, L. Mansinha, and R. Lowe, “Localization of the
complex spectrum: the S transform,” IEEE transactions on signal
processing, vol. 44, no. 4, pp. 998–1001, 1996.

### 使用 Python 实现 S 变换 S 变换是一种结合了短时傅里叶变换和小波变换优点的时间频率分析方法。下面展示一段基于 `numpy` 和 `scipy` 库来计算一维信号的 S 变换的简化版本。 ```python import numpy as np from scipy.signal import hilbert, gaussian def s_transform(signal, fs=1.0): """ 计算给定时间序列的S变换 参数: signal (array_like): 输入的一维实数数组表示要处理的信号. fs (float): 采样率,默认为1Hz 返回: st (ndarray): 复数值矩阵,每一列对应不同频率下的S变换结果 freqs (ndarray): 频率轴向量 """ npts = len(signal) t = np.arange(npts) / float(fs) # 构建高斯窗函数 widths = np.logspace(0, 2, num=npts//8+1) cwtmatr = [] for width in widths: wavelet_data = gaussian(M=int(width*7), std=width)(t[:,None]-np.mean(t)) analytic_signal = hilbert(signal) cwtmatr.append(np.convolve(analytic_signal, wavelet_data, mode='same')) cwtmatr = np.array(cwtmatr) fmin = min(widths)/(npts/fs) fmax = max(widths)/(npts/fs) freqs = np.linspace(fmin,fmax,len(widths)) return cwtmatr.T, freqs ``` 此代码片段定义了一个名为`s_transform()` 的函数,该函数接收一个输入信号以及可选参数采样频率 `fs` 。它返回两个值:一个是包含复数值的结果矩阵;另一个是对应的离散化后的频率列表[^1]。 需要注意的是上述实现仅作为教学用途,在实际应用中建议采用成熟的第三方库如 PyWavelets 或其他专门针对高效能需求设计的专业工具包来进行更精确高效的运算[^2]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值