局部最大值同步压缩变换(Local maximum synchrosqueezing transform)原理和Matlab代码

文章提出了局部最大值同步压缩变换(LMSST)以解决同步压缩变换在处理幅调频信号时的能量扩散和模糊问题。LMSST通过脊提取算法提升瞬时频率估计的精度,增强能量聚集性。与传统的同步压缩变换相比,主要区别在于其瞬时频率估计算法。实验结果对比了LMSST与短时傅里叶变换的效果。
摘要由CSDN通过智能技术生成

局部最大值同步压缩变换

为了提高同步压缩变换的能量聚集性并逼近理想的时频分析工具,局部最大值同步压缩变换(LMSST)被提出。面对谐波信号,同步压缩变换可以达到理想的时频表示。但是,面对强调幅调频信号,同步压缩变换的结果会存在能量扩散现象和模糊问题。本质上,是因为同步压缩变换的瞬时频率估计算子的精度不够。一种方法是引入自适应的窗函数取改善线性时频分析工具的性能,提高瞬时频率估计的准确性。另一种方法是基于信号的高阶泰勒展开,产生更加准确的瞬时频率估计算子。

LMSST另辟蹊径,基于脊提取算法去估计瞬时频率,从而产生提高能量聚集性。它使用下式去估计多分量信号的瞬时频率估计。

在这里插入图片描述
回顾同步压缩变换中的瞬时频率估计算子为
在这里插入图片描述
那么,LMSST被定义为
在这里插入图片描述
事实上,个人认为上式有误,应该存在一个求和号。相比于同步压缩变换,LMSST仅仅是瞬时频率估计算子不同。

Matlab代码

实验结果

第一幅图为短时傅里叶变换的结果,第二幅图为LMSST的结果。
在这里插入图片描述
在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值