局部最大值同步压缩变换
为了提高同步压缩变换的能量聚集性并逼近理想的时频分析工具,局部最大值同步压缩变换(LMSST)被提出。面对谐波信号,同步压缩变换可以达到理想的时频表示。但是,面对强调幅调频信号,同步压缩变换的结果会存在能量扩散现象和模糊问题。本质上,是因为同步压缩变换的瞬时频率估计算子的精度不够。一种方法是引入自适应的窗函数取改善线性时频分析工具的性能,提高瞬时频率估计的准确性。另一种方法是基于信号的高阶泰勒展开,产生更加准确的瞬时频率估计算子。
LMSST另辟蹊径,基于脊提取算法去估计瞬时频率,从而产生提高能量聚集性。它使用下式去估计多分量信号的瞬时频率估计。
回顾同步压缩变换中的瞬时频率估计算子为
那么,LMSST被定义为
事实上,个人认为上式有误,应该存在一个求和号。相比于同步压缩变换,LMSST仅仅是瞬时频率估计算子不同。
Matlab代码
实验结果
第一幅图为短时傅里叶变换的结果,第二幅图为LMSST的结果。