【Matlab代码】微分方程的解析解和数值解

本文介绍如何使用Matlab求解微分方程的解析解和数值解。包括dsolve函数用于求解解析解的方法及其格式说明,并通过示例进行演示;同时介绍了ode45函数求解数值解的过程及可视化结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Matlab求微分方程的解析解
用法:dsolve(‘equation’,‘condition;,‘v’)
说明:(1)equation是方程式,condition是条件,v是自变量(确省为t)
(2)若不带条件,则解中带积分常数。
(3)如果没有显示解,则系统尝试给出隐氏解。
(4)如果无隐氏解,则返回空符号。
格式:(1)y’表示为Dy,y’‘表示为D2y,依次类推。
(2)有多个方程或多个条件时,写多个对应的参数即可。
例1:求微分方程y’’-5y’+6y=e^ax

y=dsolve('D2y-5*Dy+6*y=exp(a*x)','x')

在这里插入图片描述
则原方程通解为:
在这里插入图片描述
例2:求微分方程
在这里插入图片描述
满足条件
在这里插入图片描述
的特解。

y=dsolve('(1+x^2)*Dy+2*x*y=x*exp(x^2)','y(0)=-1/2','x')

在这里插入图片描述
即原方程特解为:
在这里插入图片描述
Matlab求微分方程的数值解:
用法:[t,Y]=ode45(odefun,tspan,y0)
说明:(1)odefun是待求解一阶微分方程或方程组的句柄,对应一个M文件。
(2)tspan求解区间,y0为初值。
(3)返回值t为自变量的数据列。
(4)返回值Y一般是矩阵,每列对应一个待解变量的数据列。
例:求微分方程在这里插入图片描述
的数值解,条件
在这里插入图片描述

function dy=odefun1(x,y)
dy=zeros(2,1);%存储y1,y2的导数
dy(1)=y(2);%第一个方程
dy(2)=-y(1)-sin(2*x);%第二个方程
[x,y]=ode45('odefun1',[pi,2*pi],[1;1]);

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
结果的可视化:

plot(x,y(:,1));xlabel('x');ylabel('y')

在这里插入图片描述

plot(x,y(:,2));xlabel('x');ylabel('y\prime')

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值