我们都知道重要极限 lim x → 0 s i n x x = 1 \lim\limits_{x \to 0}\frac{sinx}{x}=1 x→0limxsinx=1
你可以用洛必达或者泰勒展开来做,这里用洛必达吧
lim x → 0 s i n x x = lim x → 0 cos x = c o s 0 = 1 \lim\limits_{x \to 0}\frac{sinx}{x}=\lim\limits_{x \to 0}\cos x=cos0=1 x→0limxsinx=x→0limcosx=cos0=1
那么,我们来看看下面这个极限:
lim x → 0 s i n ( x s i n 1 x ) x s i n 1 x \lim\limits_{x \to 0}\frac{sin(xsin\frac{1}{x})}{xsin\frac{1}{x}} x→0limxsinx1sin(xsinx1), x → 0 x \to 0 x→0时, s i n 1 x sin\frac{1}{x} sinx1震荡, x x x有界为0,则分母为0,同理上面分子也为0,分子分母为0,开始洛必达吧!立即推原式=1!
凉凉的分割线
如果你真的按上面做了,说明对极限和洛必达理解不够。我们一定要注意极限是一个过程, x → 0 x \to 0 x→0 并不是说 x = 0 x=0 x=0。注意到三角函数它有个周期性,若 x = 1 k π x=\frac{1}{k\pi} x=kπ1 那么 s i n 1 x = 0 sin\frac{1}{x}=0 sinx1=0,就不满足用洛必达的条件了。一定要注意趋于0并不代表等于0。最后,此题极限不存在。
其实,感觉在做题过程中,我感觉我自己更倾向于泰勒展开式,一般就是泰勒展开了然后等价替换最后或者中间步骤用洛必达,感觉之前大一说的“洛到祖坟上去”对于考研数学很致命。
By the way:由于wordpress还没时间去搭建,所以暂时用csdn记录考研数学的一些东西。希望能遇到志同道合的朋友一起交流考研!
路漫漫其修远兮,吾将上下而求索!